| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismid.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | ismid.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | ismid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | ismid.1 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | lmif.m |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 7 |  | lmif.l |  |-  L = ( LineG ` G ) | 
						
							| 8 |  | lmif.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 |  | lmicl.1 |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | lmimid.s |  |-  S = ( ( pInvG ` G ) ` B ) | 
						
							| 11 |  | lmimid.r |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 12 |  | lmimid.a |  |-  ( ph -> A e. D ) | 
						
							| 13 |  | lmimid.b |  |-  ( ph -> B e. D ) | 
						
							| 14 |  | lmimid.c |  |-  ( ph -> C e. P ) | 
						
							| 15 |  | lmimid.d |  |-  ( ph -> A =/= B ) | 
						
							| 16 | 10 | a1i |  |-  ( ph -> S = ( ( pInvG ` G ) ` B ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( ph -> ( S ` C ) = ( ( ( pInvG ` G ) ` B ) ` C ) ) | 
						
							| 18 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 19 | 1 7 3 4 8 13 | tglnpt |  |-  ( ph -> B e. P ) | 
						
							| 20 | 1 2 3 7 18 4 19 10 14 | mircl |  |-  ( ph -> ( S ` C ) e. P ) | 
						
							| 21 | 1 2 3 4 5 14 20 18 19 | ismidb |  |-  ( ph -> ( ( S ` C ) = ( ( ( pInvG ` G ) ` B ) ` C ) <-> ( C ( midG ` G ) ( S ` C ) ) = B ) ) | 
						
							| 22 | 17 21 | mpbid |  |-  ( ph -> ( C ( midG ` G ) ( S ` C ) ) = B ) | 
						
							| 23 | 22 13 | eqeltrd |  |-  ( ph -> ( C ( midG ` G ) ( S ` C ) ) e. D ) | 
						
							| 24 |  | df-ne |  |-  ( C =/= ( S ` C ) <-> -. C = ( S ` C ) ) | 
						
							| 25 | 4 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> G e. TarskiG ) | 
						
							| 26 | 8 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> D e. ran L ) | 
						
							| 27 | 14 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> C e. P ) | 
						
							| 28 | 20 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> ( S ` C ) e. P ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> C =/= ( S ` C ) ) | 
						
							| 30 | 1 3 7 25 27 28 29 | tgelrnln |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> ( C L ( S ` C ) ) e. ran L ) | 
						
							| 31 | 13 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> B e. D ) | 
						
							| 32 | 19 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> B e. P ) | 
						
							| 33 | 1 2 3 4 5 14 20 | midbtwn |  |-  ( ph -> ( C ( midG ` G ) ( S ` C ) ) e. ( C I ( S ` C ) ) ) | 
						
							| 34 | 22 33 | eqeltrrd |  |-  ( ph -> B e. ( C I ( S ` C ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> B e. ( C I ( S ` C ) ) ) | 
						
							| 36 | 1 3 7 25 27 28 32 29 35 | btwnlng1 |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> B e. ( C L ( S ` C ) ) ) | 
						
							| 37 | 31 36 | elind |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> B e. ( D i^i ( C L ( S ` C ) ) ) ) | 
						
							| 38 | 12 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> A e. D ) | 
						
							| 39 | 1 3 7 25 27 28 29 | tglinerflx1 |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> C e. ( C L ( S ` C ) ) ) | 
						
							| 40 | 15 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> A =/= B ) | 
						
							| 41 | 1 2 3 7 18 4 19 10 14 | mirinv |  |-  ( ph -> ( ( S ` C ) = C <-> B = C ) ) | 
						
							| 42 |  | eqcom |  |-  ( B = C <-> C = B ) | 
						
							| 43 | 41 42 | bitrdi |  |-  ( ph -> ( ( S ` C ) = C <-> C = B ) ) | 
						
							| 44 | 43 | biimpar |  |-  ( ( ph /\ C = B ) -> ( S ` C ) = C ) | 
						
							| 45 | 44 | eqcomd |  |-  ( ( ph /\ C = B ) -> C = ( S ` C ) ) | 
						
							| 46 | 45 | ex |  |-  ( ph -> ( C = B -> C = ( S ` C ) ) ) | 
						
							| 47 | 46 | necon3d |  |-  ( ph -> ( C =/= ( S ` C ) -> C =/= B ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> C =/= B ) | 
						
							| 49 | 11 | adantr |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 50 | 1 2 3 7 25 26 30 37 38 39 40 48 49 | ragperp |  |-  ( ( ph /\ C =/= ( S ` C ) ) -> D ( perpG ` G ) ( C L ( S ` C ) ) ) | 
						
							| 51 | 50 | ex |  |-  ( ph -> ( C =/= ( S ` C ) -> D ( perpG ` G ) ( C L ( S ` C ) ) ) ) | 
						
							| 52 | 24 51 | biimtrrid |  |-  ( ph -> ( -. C = ( S ` C ) -> D ( perpG ` G ) ( C L ( S ` C ) ) ) ) | 
						
							| 53 | 52 | orrd |  |-  ( ph -> ( C = ( S ` C ) \/ D ( perpG ` G ) ( C L ( S ` C ) ) ) ) | 
						
							| 54 | 53 | orcomd |  |-  ( ph -> ( D ( perpG ` G ) ( C L ( S ` C ) ) \/ C = ( S ` C ) ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 14 20 | islmib |  |-  ( ph -> ( ( S ` C ) = ( M ` C ) <-> ( ( C ( midG ` G ) ( S ` C ) ) e. D /\ ( D ( perpG ` G ) ( C L ( S ` C ) ) \/ C = ( S ` C ) ) ) ) ) | 
						
							| 56 | 23 54 55 | mpbir2and |  |-  ( ph -> ( S ` C ) = ( M ` C ) ) | 
						
							| 57 | 56 | eqcomd |  |-  ( ph -> ( M ` C ) = ( S ` C ) ) |