| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismid.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | ismid.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | ismid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | ismid.1 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | lmif.m |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 7 |  | lmif.l |  |-  L = ( LineG ` G ) | 
						
							| 8 |  | lmif.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | lmif |  |-  ( ph -> M : P --> P ) | 
						
							| 10 | 9 | ffnd |  |-  ( ph -> M Fn P ) | 
						
							| 11 | 4 | adantr |  |-  ( ( ph /\ b e. P ) -> G e. TarskiG ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ b e. P ) -> G TarskiGDim>= 2 ) | 
						
							| 13 | 8 | adantr |  |-  ( ( ph /\ b e. P ) -> D e. ran L ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ b e. P ) -> b e. P ) | 
						
							| 15 | 1 2 3 11 12 6 7 13 14 | lmilmi |  |-  ( ( ph /\ b e. P ) -> ( M ` ( M ` b ) ) = b ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( ph -> A. b e. P ( M ` ( M ` b ) ) = b ) | 
						
							| 17 |  | nvocnv |  |-  ( ( M : P --> P /\ A. b e. P ( M ` ( M ` b ) ) = b ) -> `' M = M ) | 
						
							| 18 | 9 16 17 | syl2anc |  |-  ( ph -> `' M = M ) | 
						
							| 19 |  | nvof1o |  |-  ( ( M Fn P /\ `' M = M ) -> M : P -1-1-onto-> P ) | 
						
							| 20 | 10 18 19 | syl2anc |  |-  ( ph -> M : P -1-1-onto-> P ) |