| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
| 7 |
|
lmif.l |
|- L = ( LineG ` G ) |
| 8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
| 9 |
1 2 3 4 5 6 7 8
|
lmif |
|- ( ph -> M : P --> P ) |
| 10 |
9
|
ffnd |
|- ( ph -> M Fn P ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ b e. P ) -> G e. TarskiG ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ b e. P ) -> G TarskiGDim>= 2 ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ b e. P ) -> D e. ran L ) |
| 14 |
|
simpr |
|- ( ( ph /\ b e. P ) -> b e. P ) |
| 15 |
1 2 3 11 12 6 7 13 14
|
lmilmi |
|- ( ( ph /\ b e. P ) -> ( M ` ( M ` b ) ) = b ) |
| 16 |
15
|
ralrimiva |
|- ( ph -> A. b e. P ( M ` ( M ` b ) ) = b ) |
| 17 |
|
nvocnv |
|- ( ( M : P --> P /\ A. b e. P ( M ` ( M ` b ) ) = b ) -> `' M = M ) |
| 18 |
9 16 17
|
syl2anc |
|- ( ph -> `' M = M ) |
| 19 |
|
nvof1o |
|- ( ( M Fn P /\ `' M = M ) -> M : P -1-1-onto-> P ) |
| 20 |
10 18 19
|
syl2anc |
|- ( ph -> M : P -1-1-onto-> P ) |