| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismid.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | ismid.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | ismid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | ismid.1 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | lmif.m |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 7 |  | lmif.l |  |-  L = ( LineG ` G ) | 
						
							| 8 |  | lmif.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 |  | lmiiso.1 |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | lmiiso.2 |  |-  ( ph -> B e. P ) | 
						
							| 11 |  | lmiisolem.s |  |-  S = ( ( pInvG ` G ) ` Z ) | 
						
							| 12 |  | lmiisolem.z |  |-  Z = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> G e. TarskiG ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | lmicl |  |-  ( ph -> ( M ` A ) e. P ) | 
						
							| 15 | 1 2 3 4 5 9 14 | midcl |  |-  ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. P ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 10 | lmicl |  |-  ( ph -> ( M ` B ) e. P ) | 
						
							| 17 | 1 2 3 4 5 10 16 | midcl |  |-  ( ph -> ( B ( midG ` G ) ( M ` B ) ) e. P ) | 
						
							| 18 | 1 2 3 4 5 15 17 | midcl |  |-  ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) e. P ) | 
						
							| 19 | 12 18 | eqeltrid |  |-  ( ph -> Z e. P ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> Z e. P ) | 
						
							| 21 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 22 | 1 2 3 7 21 4 19 11 9 | mircl |  |-  ( ph -> ( S ` A ) e. P ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( S ` A ) e. P ) | 
						
							| 24 | 9 | adantr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> A e. P ) | 
						
							| 25 | 1 2 3 7 21 13 20 11 24 | mircgr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( Z .- ( S ` A ) ) = ( Z .- A ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( S ` A ) = Z ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( ph /\ ( S ` A ) = Z ) -> Z = ( S ` A ) ) | 
						
							| 28 | 1 2 3 13 20 23 20 24 25 27 | tgcgreq |  |-  ( ( ph /\ ( S ` A ) = Z ) -> Z = A ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( A ( midG ` G ) ( M ` A ) ) ) = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 31 | 12 30 | eqtr4id |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> Z = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( A ( midG ` G ) ( M ` A ) ) ) ) | 
						
							| 32 | 4 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> G e. TarskiG ) | 
						
							| 33 | 5 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> G TarskiGDim>= 2 ) | 
						
							| 34 | 15 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) | 
						
							| 35 | 1 2 3 32 33 34 34 | midid |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( A ( midG ` G ) ( M ` A ) ) ) = ( A ( midG ` G ) ( M ` A ) ) ) | 
						
							| 36 | 31 35 | eqtrd |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> Z = ( A ( midG ` G ) ( M ` A ) ) ) | 
						
							| 37 |  | eqidd |  |-  ( ph -> ( M ` A ) = ( M ` A ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 14 | islmib |  |-  ( ph -> ( ( M ` A ) = ( M ` A ) <-> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) ) | 
						
							| 39 | 37 38 | mpbid |  |-  ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) | 
						
							| 40 | 39 | simpld |  |-  ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. D ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. D ) | 
						
							| 42 | 36 41 | eqeltrd |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. D ) | 
						
							| 43 | 4 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> G e. TarskiG ) | 
						
							| 44 | 15 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) | 
						
							| 45 | 17 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. P ) | 
						
							| 46 | 19 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. P ) | 
						
							| 47 |  | simpr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 48 | 1 2 3 4 5 15 17 | midbtwn |  |-  ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) e. ( ( A ( midG ` G ) ( M ` A ) ) I ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 49 | 12 48 | eqeltrid |  |-  ( ph -> Z e. ( ( A ( midG ` G ) ( M ` A ) ) I ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. ( ( A ( midG ` G ) ( M ` A ) ) I ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 51 | 1 3 7 43 44 45 46 47 50 | btwnlng1 |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. ( ( A ( midG ` G ) ( M ` A ) ) L ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 52 | 8 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> D e. ran L ) | 
						
							| 53 | 40 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. D ) | 
						
							| 54 |  | eqidd |  |-  ( ph -> ( M ` B ) = ( M ` B ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 10 16 | islmib |  |-  ( ph -> ( ( M ` B ) = ( M ` B ) <-> ( ( B ( midG ` G ) ( M ` B ) ) e. D /\ ( D ( perpG ` G ) ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) ) ) | 
						
							| 56 | 54 55 | mpbid |  |-  ( ph -> ( ( B ( midG ` G ) ( M ` B ) ) e. D /\ ( D ( perpG ` G ) ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) ) | 
						
							| 57 | 56 | simpld |  |-  ( ph -> ( B ( midG ` G ) ( M ` B ) ) e. D ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. D ) | 
						
							| 59 | 1 3 7 43 44 45 47 47 52 53 58 | tglinethru |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> D = ( ( A ( midG ` G ) ( M ` A ) ) L ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 60 | 51 59 | eleqtrrd |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) =/= ( B ( midG ` G ) ( M ` B ) ) ) -> Z e. D ) | 
						
							| 61 | 42 60 | pm2.61dane |  |-  ( ph -> Z e. D ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> Z e. D ) | 
						
							| 63 | 28 62 | eqeltrrd |  |-  ( ( ph /\ ( S ` A ) = Z ) -> A e. D ) | 
						
							| 64 | 1 2 3 4 5 6 7 8 9 | lmiinv |  |-  ( ph -> ( ( M ` A ) = A <-> A e. D ) ) | 
						
							| 65 | 64 | biimpar |  |-  ( ( ph /\ A e. D ) -> ( M ` A ) = A ) | 
						
							| 66 | 63 65 | syldan |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( M ` A ) = A ) | 
						
							| 67 | 66 28 | eqtr4d |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( M ` A ) = Z ) | 
						
							| 68 | 67 | oveq1d |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( ( M ` A ) .- ( M ` B ) ) = ( Z .- ( M ` B ) ) ) | 
						
							| 69 |  | eqidd |  |-  ( ( ph /\ B = ( M ` B ) ) -> Z = Z ) | 
						
							| 70 | 4 | adantr |  |-  ( ( ph /\ B = ( M ` B ) ) -> G e. TarskiG ) | 
						
							| 71 | 10 | adantr |  |-  ( ( ph /\ B = ( M ` B ) ) -> B e. P ) | 
						
							| 72 | 17 | adantr |  |-  ( ( ph /\ B = ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. P ) | 
						
							| 73 | 1 2 3 4 5 10 16 | midbtwn |  |-  ( ph -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I ( M ` B ) ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ B = ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I ( M ` B ) ) ) | 
						
							| 75 |  | simpr |  |-  ( ( ph /\ B = ( M ` B ) ) -> B = ( M ` B ) ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ph /\ B = ( M ` B ) ) -> ( B I B ) = ( B I ( M ` B ) ) ) | 
						
							| 77 | 74 76 | eleqtrrd |  |-  ( ( ph /\ B = ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I B ) ) | 
						
							| 78 | 1 2 3 70 71 72 77 | axtgbtwnid |  |-  ( ( ph /\ B = ( M ` B ) ) -> B = ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 79 |  | eqidd |  |-  ( ( ph /\ B = ( M ` B ) ) -> B = B ) | 
						
							| 80 | 69 78 79 | s3eqd |  |-  ( ( ph /\ B = ( M ` B ) ) -> <" Z B B "> = <" Z ( B ( midG ` G ) ( M ` B ) ) B "> ) | 
						
							| 81 | 1 2 3 7 21 4 19 10 10 | ragtrivb |  |-  ( ph -> <" Z B B "> e. ( raG ` G ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ B = ( M ` B ) ) -> <" Z B B "> e. ( raG ` G ) ) | 
						
							| 83 | 80 82 | eqeltrrd |  |-  ( ( ph /\ B = ( M ` B ) ) -> <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) ) | 
						
							| 84 | 4 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> G e. TarskiG ) | 
						
							| 85 | 61 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> Z e. D ) | 
						
							| 86 | 57 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. D ) | 
						
							| 87 | 10 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> B e. P ) | 
						
							| 88 |  | df-ne |  |-  ( B =/= ( M ` B ) <-> -. B = ( M ` B ) ) | 
						
							| 89 | 56 | simprd |  |-  ( ph -> ( D ( perpG ` G ) ( B L ( M ` B ) ) \/ B = ( M ` B ) ) ) | 
						
							| 90 | 89 | orcomd |  |-  ( ph -> ( B = ( M ` B ) \/ D ( perpG ` G ) ( B L ( M ` B ) ) ) ) | 
						
							| 91 | 90 | orcanai |  |-  ( ( ph /\ -. B = ( M ` B ) ) -> D ( perpG ` G ) ( B L ( M ` B ) ) ) | 
						
							| 92 | 88 91 | sylan2b |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> D ( perpG ` G ) ( B L ( M ` B ) ) ) | 
						
							| 93 | 16 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( M ` B ) e. P ) | 
						
							| 94 |  | simpr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> B =/= ( M ` B ) ) | 
						
							| 95 | 17 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. P ) | 
						
							| 96 | 4 | adantr |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> G e. TarskiG ) | 
						
							| 97 | 10 | adantr |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> B e. P ) | 
						
							| 98 | 16 | adantr |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( M ` B ) e. P ) | 
						
							| 99 | 5 | adantr |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> G TarskiGDim>= 2 ) | 
						
							| 100 |  | simpr |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( B ( midG ` G ) ( M ` B ) ) = B ) | 
						
							| 101 | 1 2 3 96 99 97 98 100 | midcgr |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( B .- B ) = ( B .- ( M ` B ) ) ) | 
						
							| 102 | 101 | eqcomd |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> ( B .- ( M ` B ) ) = ( B .- B ) ) | 
						
							| 103 | 1 2 3 96 97 98 97 102 | axtgcgrid |  |-  ( ( ph /\ ( B ( midG ` G ) ( M ` B ) ) = B ) -> B = ( M ` B ) ) | 
						
							| 104 | 103 | ex |  |-  ( ph -> ( ( B ( midG ` G ) ( M ` B ) ) = B -> B = ( M ` B ) ) ) | 
						
							| 105 | 104 | necon3d |  |-  ( ph -> ( B =/= ( M ` B ) -> ( B ( midG ` G ) ( M ` B ) ) =/= B ) ) | 
						
							| 106 | 105 | imp |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) =/= B ) | 
						
							| 107 | 73 | adantr |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B I ( M ` B ) ) ) | 
						
							| 108 | 1 3 7 84 87 93 95 94 107 | btwnlng1 |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B ( midG ` G ) ( M ` B ) ) e. ( B L ( M ` B ) ) ) | 
						
							| 109 | 1 3 7 84 87 93 94 95 106 108 | tglineelsb2 |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B L ( M ` B ) ) = ( B L ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 110 | 1 3 7 84 95 87 106 | tglinecom |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( ( B ( midG ` G ) ( M ` B ) ) L B ) = ( B L ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 111 | 109 110 | eqtr4d |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> ( B L ( M ` B ) ) = ( ( B ( midG ` G ) ( M ` B ) ) L B ) ) | 
						
							| 112 | 92 111 | breqtrd |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> D ( perpG ` G ) ( ( B ( midG ` G ) ( M ` B ) ) L B ) ) | 
						
							| 113 | 1 2 3 7 84 85 86 87 112 | perpdrag |  |-  ( ( ph /\ B =/= ( M ` B ) ) -> <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) ) | 
						
							| 114 | 83 113 | pm2.61dane |  |-  ( ph -> <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) ) | 
						
							| 115 | 1 2 3 7 21 4 19 17 10 | israg |  |-  ( ph -> ( <" Z ( B ( midG ` G ) ( M ` B ) ) B "> e. ( raG ` G ) <-> ( Z .- B ) = ( Z .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) ) ) | 
						
							| 116 | 114 115 | mpbid |  |-  ( ph -> ( Z .- B ) = ( Z .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) ) | 
						
							| 117 |  | eqidd |  |-  ( ph -> ( B ( midG ` G ) ( M ` B ) ) = ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 118 | 1 2 3 4 5 10 16 21 17 | ismidb |  |-  ( ph -> ( ( M ` B ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) <-> ( B ( midG ` G ) ( M ` B ) ) = ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 119 | 117 118 | mpbird |  |-  ( ph -> ( M ` B ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) | 
						
							| 120 | 119 | oveq2d |  |-  ( ph -> ( Z .- ( M ` B ) ) = ( Z .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) ) ) | 
						
							| 121 | 116 120 | eqtr4d |  |-  ( ph -> ( Z .- B ) = ( Z .- ( M ` B ) ) ) | 
						
							| 122 | 121 | adantr |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( Z .- B ) = ( Z .- ( M ` B ) ) ) | 
						
							| 123 | 28 | oveq1d |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( Z .- B ) = ( A .- B ) ) | 
						
							| 124 | 68 122 123 | 3eqtr2d |  |-  ( ( ph /\ ( S ` A ) = Z ) -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) | 
						
							| 125 | 4 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> G e. TarskiG ) | 
						
							| 126 | 22 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( S ` A ) e. P ) | 
						
							| 127 | 19 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> Z e. P ) | 
						
							| 128 | 9 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> A e. P ) | 
						
							| 129 | 1 2 3 7 21 4 19 11 14 | mircl |  |-  ( ph -> ( S ` ( M ` A ) ) e. P ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( S ` ( M ` A ) ) e. P ) | 
						
							| 131 | 14 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( M ` A ) e. P ) | 
						
							| 132 | 10 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> B e. P ) | 
						
							| 133 | 16 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( M ` B ) e. P ) | 
						
							| 134 |  | simpr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( S ` A ) =/= Z ) | 
						
							| 135 | 1 2 3 7 21 125 127 11 128 | mirbtwn |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> Z e. ( ( S ` A ) I A ) ) | 
						
							| 136 | 1 2 3 7 21 125 127 11 131 | mirbtwn |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> Z e. ( ( S ` ( M ` A ) ) I ( M ` A ) ) ) | 
						
							| 137 |  | eqidd |  |-  ( ( ph /\ A = ( M ` A ) ) -> Z = Z ) | 
						
							| 138 | 4 | adantr |  |-  ( ( ph /\ A = ( M ` A ) ) -> G e. TarskiG ) | 
						
							| 139 | 9 | adantr |  |-  ( ( ph /\ A = ( M ` A ) ) -> A e. P ) | 
						
							| 140 | 15 | adantr |  |-  ( ( ph /\ A = ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) | 
						
							| 141 | 1 2 3 4 5 9 14 | midbtwn |  |-  ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) | 
						
							| 142 | 141 | adantr |  |-  ( ( ph /\ A = ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) | 
						
							| 143 |  | simpr |  |-  ( ( ph /\ A = ( M ` A ) ) -> A = ( M ` A ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( ( ph /\ A = ( M ` A ) ) -> ( A I A ) = ( A I ( M ` A ) ) ) | 
						
							| 145 | 142 144 | eleqtrrd |  |-  ( ( ph /\ A = ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I A ) ) | 
						
							| 146 | 1 2 3 138 139 140 145 | axtgbtwnid |  |-  ( ( ph /\ A = ( M ` A ) ) -> A = ( A ( midG ` G ) ( M ` A ) ) ) | 
						
							| 147 |  | eqidd |  |-  ( ( ph /\ A = ( M ` A ) ) -> A = A ) | 
						
							| 148 | 137 146 147 | s3eqd |  |-  ( ( ph /\ A = ( M ` A ) ) -> <" Z A A "> = <" Z ( A ( midG ` G ) ( M ` A ) ) A "> ) | 
						
							| 149 | 1 2 3 7 21 4 19 9 9 | ragtrivb |  |-  ( ph -> <" Z A A "> e. ( raG ` G ) ) | 
						
							| 150 | 149 | adantr |  |-  ( ( ph /\ A = ( M ` A ) ) -> <" Z A A "> e. ( raG ` G ) ) | 
						
							| 151 | 148 150 | eqeltrrd |  |-  ( ( ph /\ A = ( M ` A ) ) -> <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) ) | 
						
							| 152 | 4 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> G e. TarskiG ) | 
						
							| 153 | 61 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> Z e. D ) | 
						
							| 154 | 40 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. D ) | 
						
							| 155 | 9 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> A e. P ) | 
						
							| 156 |  | df-ne |  |-  ( A =/= ( M ` A ) <-> -. A = ( M ` A ) ) | 
						
							| 157 | 39 | simprd |  |-  ( ph -> ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) | 
						
							| 158 | 157 | orcomd |  |-  ( ph -> ( A = ( M ` A ) \/ D ( perpG ` G ) ( A L ( M ` A ) ) ) ) | 
						
							| 159 | 158 | orcanai |  |-  ( ( ph /\ -. A = ( M ` A ) ) -> D ( perpG ` G ) ( A L ( M ` A ) ) ) | 
						
							| 160 | 156 159 | sylan2b |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> D ( perpG ` G ) ( A L ( M ` A ) ) ) | 
						
							| 161 | 14 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( M ` A ) e. P ) | 
						
							| 162 |  | simpr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> A =/= ( M ` A ) ) | 
						
							| 163 | 15 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. P ) | 
						
							| 164 | 4 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> G e. TarskiG ) | 
						
							| 165 | 9 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> A e. P ) | 
						
							| 166 | 14 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( M ` A ) e. P ) | 
						
							| 167 | 5 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> G TarskiGDim>= 2 ) | 
						
							| 168 |  | simpr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( A ( midG ` G ) ( M ` A ) ) = A ) | 
						
							| 169 | 1 2 3 164 167 165 166 168 | midcgr |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( A .- A ) = ( A .- ( M ` A ) ) ) | 
						
							| 170 | 169 | eqcomd |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> ( A .- ( M ` A ) ) = ( A .- A ) ) | 
						
							| 171 | 1 2 3 164 165 166 165 170 | axtgcgrid |  |-  ( ( ph /\ ( A ( midG ` G ) ( M ` A ) ) = A ) -> A = ( M ` A ) ) | 
						
							| 172 | 171 | ex |  |-  ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) = A -> A = ( M ` A ) ) ) | 
						
							| 173 | 172 | necon3d |  |-  ( ph -> ( A =/= ( M ` A ) -> ( A ( midG ` G ) ( M ` A ) ) =/= A ) ) | 
						
							| 174 | 173 | imp |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) =/= A ) | 
						
							| 175 | 141 | adantr |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) | 
						
							| 176 | 1 3 7 152 155 161 163 162 175 | btwnlng1 |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A ( midG ` G ) ( M ` A ) ) e. ( A L ( M ` A ) ) ) | 
						
							| 177 | 1 3 7 152 155 161 162 163 174 176 | tglineelsb2 |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A L ( M ` A ) ) = ( A L ( A ( midG ` G ) ( M ` A ) ) ) ) | 
						
							| 178 | 1 3 7 152 163 155 174 | tglinecom |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( ( A ( midG ` G ) ( M ` A ) ) L A ) = ( A L ( A ( midG ` G ) ( M ` A ) ) ) ) | 
						
							| 179 | 177 178 | eqtr4d |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> ( A L ( M ` A ) ) = ( ( A ( midG ` G ) ( M ` A ) ) L A ) ) | 
						
							| 180 | 160 179 | breqtrd |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> D ( perpG ` G ) ( ( A ( midG ` G ) ( M ` A ) ) L A ) ) | 
						
							| 181 | 1 2 3 7 152 153 154 155 180 | perpdrag |  |-  ( ( ph /\ A =/= ( M ` A ) ) -> <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) ) | 
						
							| 182 | 151 181 | pm2.61dane |  |-  ( ph -> <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) ) | 
						
							| 183 | 1 2 3 7 21 4 19 15 9 | israg |  |-  ( ph -> ( <" Z ( A ( midG ` G ) ( M ` A ) ) A "> e. ( raG ` G ) <-> ( Z .- A ) = ( Z .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) ) ) | 
						
							| 184 | 182 183 | mpbid |  |-  ( ph -> ( Z .- A ) = ( Z .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) ) | 
						
							| 185 |  | eqidd |  |-  ( ph -> ( A ( midG ` G ) ( M ` A ) ) = ( A ( midG ` G ) ( M ` A ) ) ) | 
						
							| 186 | 1 2 3 4 5 9 14 21 15 | ismidb |  |-  ( ph -> ( ( M ` A ) = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) <-> ( A ( midG ` G ) ( M ` A ) ) = ( A ( midG ` G ) ( M ` A ) ) ) ) | 
						
							| 187 | 185 186 | mpbird |  |-  ( ph -> ( M ` A ) = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) | 
						
							| 188 | 187 | oveq2d |  |-  ( ph -> ( Z .- ( M ` A ) ) = ( Z .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) ( M ` A ) ) ) ` A ) ) ) | 
						
							| 189 | 184 188 | eqtr4d |  |-  ( ph -> ( Z .- A ) = ( Z .- ( M ` A ) ) ) | 
						
							| 190 | 1 2 3 7 21 4 19 11 9 | mircgr |  |-  ( ph -> ( Z .- ( S ` A ) ) = ( Z .- A ) ) | 
						
							| 191 | 1 2 3 7 21 4 19 11 14 | mircgr |  |-  ( ph -> ( Z .- ( S ` ( M ` A ) ) ) = ( Z .- ( M ` A ) ) ) | 
						
							| 192 | 189 190 191 | 3eqtr4d |  |-  ( ph -> ( Z .- ( S ` A ) ) = ( Z .- ( S ` ( M ` A ) ) ) ) | 
						
							| 193 | 192 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( Z .- ( S ` A ) ) = ( Z .- ( S ` ( M ` A ) ) ) ) | 
						
							| 194 | 1 2 3 125 127 126 127 130 193 | tgcgrcomlr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( ( S ` A ) .- Z ) = ( ( S ` ( M ` A ) ) .- Z ) ) | 
						
							| 195 | 189 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( Z .- A ) = ( Z .- ( M ` A ) ) ) | 
						
							| 196 | 11 | fveq1i |  |-  ( S ` ( A ( midG ` G ) ( M ` A ) ) ) = ( ( ( pInvG ` G ) ` Z ) ` ( A ( midG ` G ) ( M ` A ) ) ) | 
						
							| 197 | 1 2 3 4 5 9 14 11 19 | mirmid |  |-  ( ph -> ( ( S ` A ) ( midG ` G ) ( S ` ( M ` A ) ) ) = ( S ` ( A ( midG ` G ) ( M ` A ) ) ) ) | 
						
							| 198 | 12 | eqcomi |  |-  ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = Z | 
						
							| 199 | 1 2 3 4 5 15 17 21 19 | ismidb |  |-  ( ph -> ( ( B ( midG ` G ) ( M ` B ) ) = ( ( ( pInvG ` G ) ` Z ) ` ( A ( midG ` G ) ( M ` A ) ) ) <-> ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = Z ) ) | 
						
							| 200 | 198 199 | mpbiri |  |-  ( ph -> ( B ( midG ` G ) ( M ` B ) ) = ( ( ( pInvG ` G ) ` Z ) ` ( A ( midG ` G ) ( M ` A ) ) ) ) | 
						
							| 201 | 196 197 200 | 3eqtr4a |  |-  ( ph -> ( ( S ` A ) ( midG ` G ) ( S ` ( M ` A ) ) ) = ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 202 | 1 2 3 4 5 22 129 21 17 | ismidb |  |-  ( ph -> ( ( S ` ( M ` A ) ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) <-> ( ( S ` A ) ( midG ` G ) ( S ` ( M ` A ) ) ) = ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 203 | 201 202 | mpbird |  |-  ( ph -> ( S ` ( M ` A ) ) = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) ) | 
						
							| 204 | 119 203 | oveq12d |  |-  ( ph -> ( ( M ` B ) .- ( S ` ( M ` A ) ) ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) ) ) | 
						
							| 205 |  | eqid |  |-  ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 206 | 1 2 3 7 21 4 17 205 10 22 | miriso |  |-  ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` B ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) ( M ` B ) ) ) ` ( S ` A ) ) ) = ( B .- ( S ` A ) ) ) | 
						
							| 207 | 204 206 | eqtr2d |  |-  ( ph -> ( B .- ( S ` A ) ) = ( ( M ` B ) .- ( S ` ( M ` A ) ) ) ) | 
						
							| 208 | 207 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( B .- ( S ` A ) ) = ( ( M ` B ) .- ( S ` ( M ` A ) ) ) ) | 
						
							| 209 | 1 2 3 125 132 126 133 130 208 | tgcgrcomlr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( ( S ` A ) .- B ) = ( ( S ` ( M ` A ) ) .- ( M ` B ) ) ) | 
						
							| 210 | 121 | adantr |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( Z .- B ) = ( Z .- ( M ` B ) ) ) | 
						
							| 211 | 1 2 3 125 126 127 128 130 127 131 132 133 134 135 136 194 195 209 210 | axtg5seg |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( A .- B ) = ( ( M ` A ) .- ( M ` B ) ) ) | 
						
							| 212 | 211 | eqcomd |  |-  ( ( ph /\ ( S ` A ) =/= Z ) -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) | 
						
							| 213 | 124 212 | pm2.61dane |  |-  ( ph -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |