| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismid.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | ismid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | ismid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | ismid.1 | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | lmif.m | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
						
							| 7 |  | lmif.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 8 |  | lmif.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 |  | lmiiso.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | lmiiso.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 11 |  | lmiisolem.s | ⊢ 𝑆  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) | 
						
							| 12 |  | lmiisolem.z | ⊢ 𝑍  =  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝐺  ∈  TarskiG ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | lmicl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 15 | 1 2 3 4 5 9 14 | midcl | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 10 | lmicl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 17 | 1 2 3 4 5 10 16 | midcl | ⊢ ( 𝜑  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝑃 ) | 
						
							| 18 | 1 2 3 4 5 15 17 | midcl | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  ∈  𝑃 ) | 
						
							| 19 | 12 18 | eqeltrid | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝑍  ∈  𝑃 ) | 
						
							| 21 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 22 | 1 2 3 7 21 4 19 11 9 | mircl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑆 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 24 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝐴  ∈  𝑃 ) | 
						
							| 25 | 1 2 3 7 21 13 20 11 24 | mircgr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑍  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑍  −  𝐴 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑆 ‘ 𝐴 )  =  𝑍 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝑍  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 28 | 1 2 3 13 20 23 20 24 25 27 | tgcgreq | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝑍  =  𝐴 ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) )  =  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 31 | 12 30 | eqtr4id | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  =  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 32 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 33 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 34 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 35 | 1 2 3 32 33 34 34 | midid | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) )  =  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 36 | 31 35 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  =  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 37 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 14 | islmib | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐴 )  ↔  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  ∨  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 39 | 37 38 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  ∨  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 40 | 39 | simpld | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 42 | 36 41 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  ∈  𝐷 ) | 
						
							| 43 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 44 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 45 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝑃 ) | 
						
							| 46 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  ∈  𝑃 ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 48 | 1 2 3 4 5 15 17 | midbtwn | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 49 | 12 48 | eqeltrid | ⊢ ( 𝜑  →  𝑍  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 51 | 1 3 7 43 44 45 46 47 50 | btwnlng1 | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 52 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 53 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 54 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 10 16 | islmib | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐵 )  =  ( 𝑀 ‘ 𝐵 )  ↔  ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) )  ∨  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) ) ) ) | 
						
							| 56 | 54 55 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) )  ∨  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 57 | 56 | simpld | ⊢ ( 𝜑  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝐷 ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝐷 ) | 
						
							| 59 | 1 3 7 43 44 45 47 47 52 53 58 | tglinethru | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝐷  =  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 60 | 51 59 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  →  𝑍  ∈  𝐷 ) | 
						
							| 61 | 42 60 | pm2.61dane | ⊢ ( 𝜑  →  𝑍  ∈  𝐷 ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝑍  ∈  𝐷 ) | 
						
							| 63 | 28 62 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  𝐴  ∈  𝐷 ) | 
						
							| 64 | 1 2 3 4 5 6 7 8 9 | lmiinv | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  𝐴  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 65 | 64 | biimpar | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐷 )  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) | 
						
							| 66 | 63 65 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) | 
						
							| 67 | 66 28 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑀 ‘ 𝐴 )  =  𝑍 ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 69 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝑍  =  𝑍 ) | 
						
							| 70 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 71 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 72 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝑃 ) | 
						
							| 73 | 1 2 3 4 5 10 16 | midbtwn | ⊢ ( 𝜑  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 75 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 𝐼 𝐵 )  =  ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 77 | 74 76 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  ( 𝐵 𝐼 𝐵 ) ) | 
						
							| 78 | 1 2 3 70 71 72 77 | axtgbtwnid | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝐵  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 79 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝐵  =  𝐵 ) | 
						
							| 80 | 69 78 79 | s3eqd | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  〈“ 𝑍 𝐵 𝐵 ”〉  =  〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉 ) | 
						
							| 81 | 1 2 3 7 21 4 19 10 10 | ragtrivb | ⊢ ( 𝜑  →  〈“ 𝑍 𝐵 𝐵 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  〈“ 𝑍 𝐵 𝐵 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 83 | 80 82 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 84 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 85 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  𝑍  ∈  𝐷 ) | 
						
							| 86 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝐷 ) | 
						
							| 87 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 88 |  | df-ne | ⊢ ( 𝐵  ≠  ( 𝑀 ‘ 𝐵 )  ↔  ¬  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 89 | 56 | simprd | ⊢ ( 𝜑  →  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) )  ∨  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 90 | 89 | orcomd | ⊢ ( 𝜑  →  ( 𝐵  =  ( 𝑀 ‘ 𝐵 )  ∨  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 91 | 90 | orcanai | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  ( 𝑀 ‘ 𝐵 ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 92 | 88 91 | sylan2b | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 93 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 94 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 95 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  𝑃 ) | 
						
							| 96 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 97 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 98 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 99 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 100 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 101 | 1 2 3 96 99 97 98 100 | midcgr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  ( 𝐵  −  𝐵 )  =  ( 𝐵  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  ( 𝐵  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 103 | 1 2 3 96 97 98 97 102 | axtgcgrid | ⊢ ( ( 𝜑  ∧  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  →  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 104 | 103 | ex | ⊢ ( 𝜑  →  ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  𝐵  →  𝐵  =  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 105 | 104 | necon3d | ⊢ ( 𝜑  →  ( 𝐵  ≠  ( 𝑀 ‘ 𝐵 )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ≠  𝐵 ) ) | 
						
							| 106 | 105 | imp | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ≠  𝐵 ) | 
						
							| 107 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 108 | 1 3 7 84 87 93 95 94 107 | btwnlng1 | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  ∈  ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 109 | 1 3 7 84 87 93 94 95 106 108 | tglineelsb2 | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐵 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 110 | 1 3 7 84 95 87 106 | tglinecom | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐿 𝐵 )  =  ( 𝐵 𝐿 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 111 | 109 110 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  ( 𝐵 𝐿 ( 𝑀 ‘ 𝐵 ) )  =  ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐿 𝐵 ) ) | 
						
							| 112 | 92 111 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐿 𝐵 ) ) | 
						
							| 113 | 1 2 3 7 84 85 86 87 112 | perpdrag | ⊢ ( ( 𝜑  ∧  𝐵  ≠  ( 𝑀 ‘ 𝐵 ) )  →  〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 114 | 83 113 | pm2.61dane | ⊢ ( 𝜑  →  〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 115 | 1 2 3 7 21 4 19 17 10 | israg | ⊢ ( 𝜑  →  ( 〈“ 𝑍 ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) 𝐵 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝑍  −  𝐵 )  =  ( 𝑍  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) ) ) | 
						
							| 116 | 114 115 | mpbid | ⊢ ( 𝜑  →  ( 𝑍  −  𝐵 )  =  ( 𝑍  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) ) | 
						
							| 117 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 118 | 1 2 3 4 5 10 16 21 17 | ismidb | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐵 )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 )  ↔  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 119 | 117 118 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) | 
						
							| 120 | 119 | oveq2d | ⊢ ( 𝜑  →  ( 𝑍  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝑍  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 ) ) ) | 
						
							| 121 | 116 120 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑍  −  𝐵 )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑍  −  𝐵 )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 123 | 28 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( 𝑍  −  𝐵 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 124 | 68 122 123 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  =  𝑍 )  →  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 125 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  𝐺  ∈  TarskiG ) | 
						
							| 126 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑆 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 127 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  𝑍  ∈  𝑃 ) | 
						
							| 128 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  𝐴  ∈  𝑃 ) | 
						
							| 129 | 1 2 3 7 21 4 19 11 14 | mircl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 131 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 132 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  𝐵  ∈  𝑃 ) | 
						
							| 133 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 134 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 ) | 
						
							| 135 | 1 2 3 7 21 125 127 11 128 | mirbtwn | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  𝑍  ∈  ( ( 𝑆 ‘ 𝐴 ) 𝐼 𝐴 ) ) | 
						
							| 136 | 1 2 3 7 21 125 127 11 131 | mirbtwn | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  𝑍  ∈  ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 137 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝑍  =  𝑍 ) | 
						
							| 138 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 139 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 140 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 141 | 1 2 3 4 5 9 14 | midbtwn | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 143 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 𝐼 𝐴 )  =  ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 145 | 142 144 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  ( 𝐴 𝐼 𝐴 ) ) | 
						
							| 146 | 1 2 3 138 139 140 145 | axtgbtwnid | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 147 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝐴  =  𝐴 ) | 
						
							| 148 | 137 146 147 | s3eqd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  〈“ 𝑍 𝐴 𝐴 ”〉  =  〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉 ) | 
						
							| 149 | 1 2 3 7 21 4 19 9 9 | ragtrivb | ⊢ ( 𝜑  →  〈“ 𝑍 𝐴 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 150 | 149 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  〈“ 𝑍 𝐴 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 151 | 148 150 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 152 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 153 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  𝑍  ∈  𝐷 ) | 
						
							| 154 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 155 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 156 |  | df-ne | ⊢ ( 𝐴  ≠  ( 𝑀 ‘ 𝐴 )  ↔  ¬  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 157 | 39 | simprd | ⊢ ( 𝜑  →  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  ∨  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 158 | 157 | orcomd | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝑀 ‘ 𝐴 )  ∨  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 159 | 158 | orcanai | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ( 𝑀 ‘ 𝐴 ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 160 | 156 159 | sylan2b | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 161 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 162 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 163 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝑃 ) | 
						
							| 164 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  𝐺  ∈  TarskiG ) | 
						
							| 165 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  𝐴  ∈  𝑃 ) | 
						
							| 166 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 167 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 168 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 169 | 1 2 3 164 167 165 166 168 | midcgr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  ( 𝐴  −  𝐴 )  =  ( 𝐴  −  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 170 | 169 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  ( 𝐴  −  ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 171 | 1 2 3 164 165 166 165 170 | axtgcgrid | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴 )  →  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 172 | 171 | ex | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  𝐴  →  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 173 | 172 | necon3d | ⊢ ( 𝜑  →  ( 𝐴  ≠  ( 𝑀 ‘ 𝐴 )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  𝐴 ) ) | 
						
							| 174 | 173 | imp | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ≠  𝐴 ) | 
						
							| 175 | 141 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 176 | 1 3 7 152 155 161 163 162 175 | btwnlng1 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 177 | 1 3 7 152 155 161 162 163 174 176 | tglineelsb2 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 178 | 1 3 7 152 163 155 174 | tglinecom | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 𝐴 )  =  ( 𝐴 𝐿 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 179 | 177 178 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  =  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 𝐴 ) ) | 
						
							| 180 | 160 179 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐿 𝐴 ) ) | 
						
							| 181 | 1 2 3 7 152 153 154 155 180 | perpdrag | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝑀 ‘ 𝐴 ) )  →  〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 182 | 151 181 | pm2.61dane | ⊢ ( 𝜑  →  〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 183 | 1 2 3 7 21 4 19 15 9 | israg | ⊢ ( 𝜑  →  ( 〈“ 𝑍 ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝑍  −  𝐴 )  =  ( 𝑍  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) ) | 
						
							| 184 | 182 183 | mpbid | ⊢ ( 𝜑  →  ( 𝑍  −  𝐴 )  =  ( 𝑍  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) | 
						
							| 185 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 186 | 1 2 3 4 5 9 14 21 15 | ismidb | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 )  ↔  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  =  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 187 | 185 186 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) | 
						
							| 188 | 187 | oveq2d | ⊢ ( 𝜑  →  ( 𝑍  −  ( 𝑀 ‘ 𝐴 ) )  =  ( 𝑍  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) | 
						
							| 189 | 184 188 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑍  −  𝐴 )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 190 | 1 2 3 7 21 4 19 11 9 | mircgr | ⊢ ( 𝜑  →  ( 𝑍  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑍  −  𝐴 ) ) | 
						
							| 191 | 1 2 3 7 21 4 19 11 14 | mircgr | ⊢ ( 𝜑  →  ( 𝑍  −  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 192 | 189 190 191 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑍  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑍  −  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 193 | 192 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑍  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑍  −  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 194 | 1 2 3 125 127 126 127 130 193 | tgcgrcomlr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( ( 𝑆 ‘ 𝐴 )  −  𝑍 )  =  ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) )  −  𝑍 ) ) | 
						
							| 195 | 189 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑍  −  𝐴 )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 196 | 11 | fveq1i | ⊢ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 197 | 1 2 3 4 5 9 14 11 19 | mirmid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) )  =  ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 198 | 12 | eqcomi | ⊢ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  =  𝑍 | 
						
							| 199 | 1 2 3 4 5 15 17 21 19 | ismidb | ⊢ ( 𝜑  →  ( ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) )  ↔  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  =  𝑍 ) ) | 
						
							| 200 | 198 199 | mpbiri | ⊢ ( 𝜑  →  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 201 | 196 197 200 | 3eqtr4a | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 202 | 1 2 3 4 5 22 129 21 17 | ismidb | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) )  ↔  ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) )  =  ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 203 | 201 202 | mpbird | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 204 | 119 203 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐵 )  −  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 205 |  | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) )  =  ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 206 | 1 2 3 7 21 4 17 205 10 22 | miriso | ⊢ ( 𝜑  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ 𝐵 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) )  =  ( 𝐵  −  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 207 | 204 206 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐵  −  ( 𝑆 ‘ 𝐴 ) )  =  ( ( 𝑀 ‘ 𝐵 )  −  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 208 | 207 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝐵  −  ( 𝑆 ‘ 𝐴 ) )  =  ( ( 𝑀 ‘ 𝐵 )  −  ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 209 | 1 2 3 125 132 126 133 130 208 | tgcgrcomlr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( ( 𝑆 ‘ 𝐴 )  −  𝐵 )  =  ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐴 ) )  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 210 | 121 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝑍  −  𝐵 )  =  ( 𝑍  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 211 | 1 2 3 125 126 127 128 130 127 131 132 133 134 135 136 194 195 209 210 | axtg5seg | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( 𝐴  −  𝐵 )  =  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 212 | 211 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐴 )  ≠  𝑍 )  →  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 213 | 124 212 | pm2.61dane | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐴  −  𝐵 ) ) |