Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
lmiiso.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
lmiiso.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
11 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) ) |
12 |
|
eqid |
⊢ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) = ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ( midG ‘ 𝐺 ) ( 𝐵 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐵 ) ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lmiisolem |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |