Metamath Proof Explorer


Theorem lmimot

Description: Line mirroring is a motion of the geometric space. Theorem 10.11 of Schwabhauser p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
lmif.l 𝐿 = ( LineG ‘ 𝐺 )
lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
Assertion lmimot ( 𝜑𝑀 ∈ ( 𝐺 Ismt 𝐺 ) )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
7 lmif.l 𝐿 = ( LineG ‘ 𝐺 )
8 lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
9 1 2 3 4 5 6 7 8 lmif1o ( 𝜑𝑀 : 𝑃1-1-onto𝑃 )
10 4 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐺 ∈ TarskiG )
11 5 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐺 DimTarskiG≥ 2 )
12 8 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐷 ∈ ran 𝐿 )
13 simprl ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝑎𝑃 )
14 simprr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝑏𝑃 )
15 1 2 3 10 11 6 7 12 13 14 lmiiso ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) )
16 15 ralrimivva ( 𝜑 → ∀ 𝑎𝑃𝑏𝑃 ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) )
17 1 2 ismot ( 𝐺 ∈ TarskiG → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
18 4 17 syl ( 𝜑 → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
19 9 16 18 mpbir2and ( 𝜑𝑀 ∈ ( 𝐺 Ismt 𝐺 ) )