Metamath Proof Explorer


Theorem lmimot

Description: Line mirroring is a motion of the geometric space. Theorem 10.11 of Schwabhauser p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
lmif.m
|- M = ( ( lInvG ` G ) ` D )
lmif.l
|- L = ( LineG ` G )
lmif.d
|- ( ph -> D e. ran L )
Assertion lmimot
|- ( ph -> M e. ( G Ismt G ) )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 lmif.m
 |-  M = ( ( lInvG ` G ) ` D )
7 lmif.l
 |-  L = ( LineG ` G )
8 lmif.d
 |-  ( ph -> D e. ran L )
9 1 2 3 4 5 6 7 8 lmif1o
 |-  ( ph -> M : P -1-1-onto-> P )
10 4 adantr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> G e. TarskiG )
11 5 adantr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> G TarskiGDim>= 2 )
12 8 adantr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> D e. ran L )
13 simprl
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> a e. P )
14 simprr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> b e. P )
15 1 2 3 10 11 6 7 12 13 14 lmiiso
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) )
16 15 ralrimivva
 |-  ( ph -> A. a e. P A. b e. P ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) )
17 1 2 ismot
 |-  ( G e. TarskiG -> ( M e. ( G Ismt G ) <-> ( M : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) ) ) )
18 4 17 syl
 |-  ( ph -> ( M e. ( G Ismt G ) <-> ( M : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) ) ) )
19 9 16 18 mpbir2and
 |-  ( ph -> M e. ( G Ismt G ) )