| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hypcgr.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hypcgr.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hypcgr.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hypcgr.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hypcgr.h |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | hypcgr.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hypcgr.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | hypcgr.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | hypcgr.d |  |-  ( ph -> D e. P ) | 
						
							| 10 |  | hypcgr.e |  |-  ( ph -> E e. P ) | 
						
							| 11 |  | hypcgr.f |  |-  ( ph -> F e. P ) | 
						
							| 12 |  | hypcgr.1 |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 13 |  | hypcgr.2 |  |-  ( ph -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 14 |  | hypcgr.3 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 15 |  | hypcgr.4 |  |-  ( ph -> ( B .- C ) = ( E .- F ) ) | 
						
							| 16 |  | hypcgrlem2.b |  |-  ( ph -> B = E ) | 
						
							| 17 |  | hypcgrlem1.s |  |-  S = ( ( lInvG ` G ) ` ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) | 
						
							| 18 |  | hypcgrlem1.a |  |-  ( ph -> C = F ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> G e. TarskiG ) | 
						
							| 20 | 8 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> C e. P ) | 
						
							| 21 | 6 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> A e. P ) | 
						
							| 22 | 11 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> F e. P ) | 
						
							| 23 | 9 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> D e. P ) | 
						
							| 24 |  | eqid |  |-  ( LineG ` G ) = ( LineG ` G ) | 
						
							| 25 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 26 | 1 2 3 24 25 4 6 7 8 12 | ragcom |  |-  ( ph -> <" C B A "> e. ( raG ` G ) ) | 
						
							| 27 | 1 2 3 24 25 4 8 7 6 | israg |  |-  ( ph -> ( <" C B A "> e. ( raG ` G ) <-> ( C .- A ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) ) | 
						
							| 28 | 26 27 | mpbid |  |-  ( ph -> ( C .- A ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( C .- A ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) | 
						
							| 30 | 18 | eqcomd |  |-  ( ph -> F = C ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> F = C ) | 
						
							| 32 | 1 2 3 4 5 6 9 25 7 | ismidb |  |-  ( ph -> ( D = ( ( ( pInvG ` G ) ` B ) ` A ) <-> ( A ( midG ` G ) D ) = B ) ) | 
						
							| 33 | 32 | biimpar |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> D = ( ( ( pInvG ` G ) ` B ) ` A ) ) | 
						
							| 34 | 31 33 | oveq12d |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( F .- D ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) | 
						
							| 35 | 29 34 | eqtr4d |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( C .- A ) = ( F .- D ) ) | 
						
							| 36 | 1 2 3 19 20 21 22 23 35 | tgcgrcomlr |  |-  ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = D ) -> A = D ) | 
						
							| 38 | 18 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = D ) -> C = F ) | 
						
							| 39 | 37 38 | oveq12d |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = D ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 40 | 12 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 41 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> G e. TarskiG ) | 
						
							| 42 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A e. P ) | 
						
							| 43 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> B e. P ) | 
						
							| 44 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> C e. P ) | 
						
							| 45 | 1 2 3 24 25 41 42 43 44 | israg |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) ) | 
						
							| 46 | 40 45 | mpbid |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) | 
						
							| 47 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> G TarskiGDim>= 2 ) | 
						
							| 48 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> D e. P ) | 
						
							| 49 | 1 2 3 41 47 42 48 | midcl |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. P ) | 
						
							| 50 |  | simplr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) =/= B ) | 
						
							| 51 | 1 3 24 41 49 43 50 | tgelrnln |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) e. ran ( LineG ` G ) ) | 
						
							| 52 |  | eqid |  |-  ( ( pInvG ` G ) ` B ) = ( ( pInvG ` G ) ` B ) | 
						
							| 53 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 54 | 1 2 3 24 25 41 43 52 44 | mircl |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( ( pInvG ` G ) ` B ) ` C ) e. P ) | 
						
							| 55 |  | simpr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A =/= D ) | 
						
							| 56 | 1 2 3 41 47 42 48 | midbtwn |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( A I D ) ) | 
						
							| 57 | 1 24 3 41 42 49 48 56 | btwncolg3 |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D e. ( A ( LineG ` G ) ( A ( midG ` G ) D ) ) \/ A = ( A ( midG ` G ) D ) ) ) | 
						
							| 58 |  | eqidd |  |-  ( ph -> D = D ) | 
						
							| 59 | 58 16 18 | s3eqd |  |-  ( ph -> <" D B C "> = <" D E F "> ) | 
						
							| 60 | 59 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" D B C "> = <" D E F "> ) | 
						
							| 61 | 13 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 62 | 60 61 | eqeltrd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" D B C "> e. ( raG ` G ) ) | 
						
							| 63 | 1 2 3 24 25 41 48 43 44 | israg |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" D B C "> e. ( raG ` G ) <-> ( D .- C ) = ( D .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) ) | 
						
							| 64 | 62 63 | mpbid |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D .- C ) = ( D .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) | 
						
							| 65 | 1 24 3 41 42 48 49 53 44 54 2 55 57 46 64 | lncgr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( A ( midG ` G ) D ) .- C ) = ( ( A ( midG ` G ) D ) .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) | 
						
							| 66 | 1 2 3 24 25 41 49 43 44 | israg |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" ( A ( midG ` G ) D ) B C "> e. ( raG ` G ) <-> ( ( A ( midG ` G ) D ) .- C ) = ( ( A ( midG ` G ) D ) .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) ) | 
						
							| 67 | 65 66 | mpbird |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" ( A ( midG ` G ) D ) B C "> e. ( raG ` G ) ) | 
						
							| 68 | 1 3 24 41 49 43 50 | tglinerflx1 |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) | 
						
							| 69 | 1 3 24 41 49 43 50 | tglinerflx2 |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> B e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) | 
						
							| 70 | 1 2 3 41 47 17 24 51 49 52 67 68 69 44 50 | lmimid |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( S ` C ) = ( ( ( pInvG ` G ) ` B ) ` C ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- ( S ` C ) ) = ( A .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) | 
						
							| 72 | 46 71 | eqtr4d |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- C ) = ( A .- ( S ` C ) ) ) | 
						
							| 73 | 1 2 3 41 47 48 42 | midcom |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D ( midG ` G ) A ) = ( A ( midG ` G ) D ) ) | 
						
							| 74 | 73 68 | eqeltrd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D ( midG ` G ) A ) e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) | 
						
							| 75 | 55 | necomd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> D =/= A ) | 
						
							| 76 | 1 3 24 41 48 42 75 | tgelrnln |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D ( LineG ` G ) A ) e. ran ( LineG ` G ) ) | 
						
							| 77 | 1 2 3 41 42 49 48 56 | tgbtwncom |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( D I A ) ) | 
						
							| 78 | 1 3 24 41 48 42 49 75 77 | btwnlng1 |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( D ( LineG ` G ) A ) ) | 
						
							| 79 | 68 78 | elind |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) i^i ( D ( LineG ` G ) A ) ) ) | 
						
							| 80 | 1 3 24 41 48 42 75 | tglinerflx2 |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A e. ( D ( LineG ` G ) A ) ) | 
						
							| 81 | 50 | necomd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> B =/= ( A ( midG ` G ) D ) ) | 
						
							| 82 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> G e. TarskiG ) | 
						
							| 83 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> A e. P ) | 
						
							| 84 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> D e. P ) | 
						
							| 85 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> G TarskiGDim>= 2 ) | 
						
							| 86 |  | simpr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> A = ( A ( midG ` G ) D ) ) | 
						
							| 87 | 86 | eqcomd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> ( A ( midG ` G ) D ) = A ) | 
						
							| 88 | 1 2 3 82 85 83 84 87 | midcgr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> ( A .- A ) = ( A .- D ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> ( A .- D ) = ( A .- A ) ) | 
						
							| 90 | 1 2 3 82 83 84 83 89 | axtgcgrid |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> A = D ) | 
						
							| 91 | 90 | ex |  |-  ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) -> ( A = ( A ( midG ` G ) D ) -> A = D ) ) | 
						
							| 92 | 91 | necon3d |  |-  ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) -> ( A =/= D -> A =/= ( A ( midG ` G ) D ) ) ) | 
						
							| 93 | 92 | imp |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A =/= ( A ( midG ` G ) D ) ) | 
						
							| 94 | 1 2 3 4 6 7 9 10 14 | tgcgrcomlr |  |-  ( ph -> ( B .- A ) = ( E .- D ) ) | 
						
							| 95 | 16 | oveq1d |  |-  ( ph -> ( B .- D ) = ( E .- D ) ) | 
						
							| 96 | 94 95 | eqtr4d |  |-  ( ph -> ( B .- A ) = ( B .- D ) ) | 
						
							| 97 | 96 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( B .- A ) = ( B .- D ) ) | 
						
							| 98 |  | eqidd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) = ( A ( midG ` G ) D ) ) | 
						
							| 99 | 1 2 3 41 47 42 48 25 49 | ismidb |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) <-> ( A ( midG ` G ) D ) = ( A ( midG ` G ) D ) ) ) | 
						
							| 100 | 98 99 | mpbird |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> D = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) | 
						
							| 101 | 100 | oveq2d |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( B .- D ) = ( B .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) ) | 
						
							| 102 | 97 101 | eqtrd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( B .- A ) = ( B .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) ) | 
						
							| 103 | 1 2 3 24 25 41 43 49 42 | israg |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" B ( A ( midG ` G ) D ) A "> e. ( raG ` G ) <-> ( B .- A ) = ( B .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) ) ) | 
						
							| 104 | 102 103 | mpbird |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" B ( A ( midG ` G ) D ) A "> e. ( raG ` G ) ) | 
						
							| 105 | 1 2 3 24 41 51 76 79 69 80 81 93 104 | ragperp |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ( perpG ` G ) ( D ( LineG ` G ) A ) ) | 
						
							| 106 | 105 | orcd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ( perpG ` G ) ( D ( LineG ` G ) A ) \/ D = A ) ) | 
						
							| 107 | 1 2 3 41 47 17 24 51 48 42 | islmib |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A = ( S ` D ) <-> ( ( D ( midG ` G ) A ) e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) /\ ( ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ( perpG ` G ) ( D ( LineG ` G ) A ) \/ D = A ) ) ) ) | 
						
							| 108 | 74 106 107 | mpbir2and |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A = ( S ` D ) ) | 
						
							| 109 | 108 | oveq1d |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- ( S ` C ) ) = ( ( S ` D ) .- ( S ` C ) ) ) | 
						
							| 110 | 1 2 3 41 47 17 24 51 48 44 | lmiiso |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( S ` D ) .- ( S ` C ) ) = ( D .- C ) ) | 
						
							| 111 | 18 | oveq2d |  |-  ( ph -> ( D .- C ) = ( D .- F ) ) | 
						
							| 112 | 111 | ad2antrr |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D .- C ) = ( D .- F ) ) | 
						
							| 113 | 109 110 112 | 3eqtrd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- ( S ` C ) ) = ( D .- F ) ) | 
						
							| 114 | 72 113 | eqtrd |  |-  ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 115 | 39 114 | pm2.61dane |  |-  ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 116 | 36 115 | pm2.61dane |  |-  ( ph -> ( A .- C ) = ( D .- F ) ) |