| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hypcgr.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hypcgr.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hypcgr.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hypcgr.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hypcgr.h | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | hypcgr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hypcgr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 8 |  | hypcgr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | hypcgr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 10 |  | hypcgr.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 11 |  | hypcgr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 12 |  | hypcgr.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 13 |  | hypcgr.2 | ⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 14 |  | hypcgr.3 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 15 |  | hypcgr.4 | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 16 |  | hypcgrlem2.b | ⊢ ( 𝜑  →  𝐵  =  𝐸 ) | 
						
							| 17 |  | hypcgrlem1.s | ⊢ 𝑆  =  ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 18 |  | hypcgrlem1.a | ⊢ ( 𝜑  →  𝐶  =  𝐹 ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 20 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 21 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 22 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐹  ∈  𝑃 ) | 
						
							| 23 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐷  ∈  𝑃 ) | 
						
							| 24 |  | eqid | ⊢ ( LineG ‘ 𝐺 )  =  ( LineG ‘ 𝐺 ) | 
						
							| 25 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 26 | 1 2 3 24 25 4 6 7 8 12 | ragcom | ⊢ ( 𝜑  →  〈“ 𝐶 𝐵 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 27 | 1 2 3 24 25 4 8 7 6 | israg | ⊢ ( 𝜑  →  ( 〈“ 𝐶 𝐵 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐶  −  𝐴 )  =  ( 𝐶  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) ) | 
						
							| 28 | 26 27 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐶  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  ( 𝐶  −  𝐴 )  =  ( 𝐶  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) | 
						
							| 30 | 18 | eqcomd | ⊢ ( 𝜑  →  𝐹  =  𝐶 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐹  =  𝐶 ) | 
						
							| 32 | 1 2 3 4 5 6 9 25 7 | ismidb | ⊢ ( 𝜑  →  ( 𝐷  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 )  ↔  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 ) ) | 
						
							| 33 | 32 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  𝐷  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) | 
						
							| 34 | 31 33 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  ( 𝐹  −  𝐷 )  =  ( 𝐶  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) | 
						
							| 35 | 29 34 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  ( 𝐶  −  𝐴 )  =  ( 𝐹  −  𝐷 ) ) | 
						
							| 36 | 1 2 3 19 20 21 22 23 35 | tgcgrcomlr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐵 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  𝐷 )  →  𝐴  =  𝐷 ) | 
						
							| 38 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  𝐷 )  →  𝐶  =  𝐹 ) | 
						
							| 39 | 37 38 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  𝐷 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 40 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 41 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 42 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐴  ∈  𝑃 ) | 
						
							| 43 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐵  ∈  𝑃 ) | 
						
							| 44 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐶  ∈  𝑃 ) | 
						
							| 45 | 1 2 3 24 25 41 42 43 44 | israg | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐴  −  𝐶 )  =  ( 𝐴  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) | 
						
							| 46 | 40 45 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐴  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) | 
						
							| 47 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 48 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐷  ∈  𝑃 ) | 
						
							| 49 | 1 2 3 41 47 42 48 | midcl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ∈  𝑃 ) | 
						
							| 50 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 ) | 
						
							| 51 | 1 3 24 41 49 43 50 | tgelrnln | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 )  ∈  ran  ( LineG ‘ 𝐺 ) ) | 
						
							| 52 |  | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 )  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) | 
						
							| 53 |  | eqid | ⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 ) | 
						
							| 54 | 1 2 3 24 25 41 43 52 44 | mircl | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 )  ∈  𝑃 ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐴  ≠  𝐷 ) | 
						
							| 56 | 1 2 3 41 47 42 48 | midbtwn | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 57 | 1 24 3 41 42 49 48 56 | btwncolg3 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷  ∈  ( 𝐴 ( LineG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  ∨  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ) | 
						
							| 58 |  | eqidd | ⊢ ( 𝜑  →  𝐷  =  𝐷 ) | 
						
							| 59 | 58 16 18 | s3eqd | ⊢ ( 𝜑  →  〈“ 𝐷 𝐵 𝐶 ”〉  =  〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 60 | 59 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  〈“ 𝐷 𝐵 𝐶 ”〉  =  〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 61 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 62 | 60 61 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  〈“ 𝐷 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 63 | 1 2 3 24 25 41 48 43 44 | israg | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 〈“ 𝐷 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐷  −  𝐶 )  =  ( 𝐷  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) | 
						
							| 64 | 62 63 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷  −  𝐶 )  =  ( 𝐷  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) | 
						
							| 65 | 1 24 3 41 42 48 49 53 44 54 2 55 57 46 64 | lncgr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  −  𝐶 )  =  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) | 
						
							| 66 | 1 2 3 24 25 41 49 43 44 | israg | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 〈“ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  −  𝐶 )  =  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) | 
						
							| 67 | 65 66 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  〈“ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 68 | 1 3 24 41 49 43 50 | tglinerflx1 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 69 | 1 3 24 41 49 43 50 | tglinerflx2 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐵  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 70 | 1 2 3 41 47 17 24 51 49 52 67 68 69 44 50 | lmimid | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝑆 ‘ 𝐶 )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  −  ( 𝑆 ‘ 𝐶 ) )  =  ( 𝐴  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) | 
						
							| 72 | 46 71 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐴  −  ( 𝑆 ‘ 𝐶 ) ) ) | 
						
							| 73 | 1 2 3 41 47 48 42 | midcom | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷 ( midG ‘ 𝐺 ) 𝐴 )  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 74 | 73 68 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷 ( midG ‘ 𝐺 ) 𝐴 )  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 75 | 55 | necomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐷  ≠  𝐴 ) | 
						
							| 76 | 1 3 24 41 48 42 75 | tgelrnln | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 )  ∈  ran  ( LineG ‘ 𝐺 ) ) | 
						
							| 77 | 1 2 3 41 42 49 48 56 | tgbtwncom | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ∈  ( 𝐷 𝐼 𝐴 ) ) | 
						
							| 78 | 1 3 24 41 48 42 49 75 77 | btwnlng1 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ∈  ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 79 | 68 78 | elind | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ∈  ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 )  ∩  ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) ) | 
						
							| 80 | 1 3 24 41 48 42 75 | tglinerflx2 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐴  ∈  ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 81 | 50 | necomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐵  ≠  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 82 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 83 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 84 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 85 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 86 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 87 | 86 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  𝐴 ) | 
						
							| 88 | 1 2 3 82 85 83 84 87 | midcgr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  ( 𝐴  −  𝐴 )  =  ( 𝐴  −  𝐷 ) ) | 
						
							| 89 | 88 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  ( 𝐴  −  𝐷 )  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 90 | 1 2 3 82 83 84 83 89 | axtgcgrid | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) )  →  𝐴  =  𝐷 ) | 
						
							| 91 | 90 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  →  ( 𝐴  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  →  𝐴  =  𝐷 ) ) | 
						
							| 92 | 91 | necon3d | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  →  ( 𝐴  ≠  𝐷  →  𝐴  ≠  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ) | 
						
							| 93 | 92 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐴  ≠  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 94 | 1 2 3 4 6 7 9 10 14 | tgcgrcomlr | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  =  ( 𝐸  −  𝐷 ) ) | 
						
							| 95 | 16 | oveq1d | ⊢ ( 𝜑  →  ( 𝐵  −  𝐷 )  =  ( 𝐸  −  𝐷 ) ) | 
						
							| 96 | 94 95 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  𝐷 ) ) | 
						
							| 97 | 96 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  𝐷 ) ) | 
						
							| 98 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 99 | 1 2 3 41 47 42 48 25 49 | ismidb | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 )  ↔  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  =  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ) | 
						
							| 100 | 98 99 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐷  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) | 
						
							| 101 | 100 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐵  −  𝐷 )  =  ( 𝐵  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) ) | 
						
							| 102 | 97 101 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) ) | 
						
							| 103 | 1 2 3 24 25 41 43 49 42 | israg | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 〈“ 𝐵 ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) ) ) | 
						
							| 104 | 102 103 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  〈“ 𝐵 ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐴 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 105 | 1 2 3 24 41 51 76 79 69 80 81 93 104 | ragperp | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 106 | 105 | orcd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝐷  =  𝐴 ) ) | 
						
							| 107 | 1 2 3 41 47 17 24 51 48 42 | islmib | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  =  ( 𝑆 ‘ 𝐷 )  ↔  ( ( 𝐷 ( midG ‘ 𝐺 ) 𝐴 )  ∈  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 )  ∧  ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝐷  =  𝐴 ) ) ) ) | 
						
							| 108 | 74 106 107 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  𝐴  =  ( 𝑆 ‘ 𝐷 ) ) | 
						
							| 109 | 108 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  −  ( 𝑆 ‘ 𝐶 ) )  =  ( ( 𝑆 ‘ 𝐷 )  −  ( 𝑆 ‘ 𝐶 ) ) ) | 
						
							| 110 | 1 2 3 41 47 17 24 51 48 44 | lmiiso | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( ( 𝑆 ‘ 𝐷 )  −  ( 𝑆 ‘ 𝐶 ) )  =  ( 𝐷  −  𝐶 ) ) | 
						
							| 111 | 18 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 112 | 111 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐷  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 113 | 109 110 112 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  −  ( 𝑆 ‘ 𝐶 ) )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 114 | 72 113 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  ∧  𝐴  ≠  𝐷 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 115 | 39 114 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 )  ≠  𝐵 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 116 | 36 115 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) |