Metamath Proof Explorer


Theorem hypcgrlem1

Description: Lemma for hypcgr , case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses hypcgr.p P = Base G
hypcgr.m - ˙ = dist G
hypcgr.i I = Itv G
hypcgr.g φ G 𝒢 Tarski
hypcgr.h φ G Dim 𝒢 2
hypcgr.a φ A P
hypcgr.b φ B P
hypcgr.c φ C P
hypcgr.d φ D P
hypcgr.e φ E P
hypcgr.f φ F P
hypcgr.1 φ ⟨“ ABC ”⟩ 𝒢 G
hypcgr.2 φ ⟨“ DEF ”⟩ 𝒢 G
hypcgr.3 φ A - ˙ B = D - ˙ E
hypcgr.4 φ B - ˙ C = E - ˙ F
hypcgrlem2.b φ B = E
hypcgrlem1.s S = lInv 𝒢 G A mid 𝒢 G D Line 𝒢 G B
hypcgrlem1.a φ C = F
Assertion hypcgrlem1 φ A - ˙ C = D - ˙ F

Proof

Step Hyp Ref Expression
1 hypcgr.p P = Base G
2 hypcgr.m - ˙ = dist G
3 hypcgr.i I = Itv G
4 hypcgr.g φ G 𝒢 Tarski
5 hypcgr.h φ G Dim 𝒢 2
6 hypcgr.a φ A P
7 hypcgr.b φ B P
8 hypcgr.c φ C P
9 hypcgr.d φ D P
10 hypcgr.e φ E P
11 hypcgr.f φ F P
12 hypcgr.1 φ ⟨“ ABC ”⟩ 𝒢 G
13 hypcgr.2 φ ⟨“ DEF ”⟩ 𝒢 G
14 hypcgr.3 φ A - ˙ B = D - ˙ E
15 hypcgr.4 φ B - ˙ C = E - ˙ F
16 hypcgrlem2.b φ B = E
17 hypcgrlem1.s S = lInv 𝒢 G A mid 𝒢 G D Line 𝒢 G B
18 hypcgrlem1.a φ C = F
19 4 adantr φ A mid 𝒢 G D = B G 𝒢 Tarski
20 8 adantr φ A mid 𝒢 G D = B C P
21 6 adantr φ A mid 𝒢 G D = B A P
22 11 adantr φ A mid 𝒢 G D = B F P
23 9 adantr φ A mid 𝒢 G D = B D P
24 eqid Line 𝒢 G = Line 𝒢 G
25 eqid pInv 𝒢 G = pInv 𝒢 G
26 1 2 3 24 25 4 6 7 8 12 ragcom φ ⟨“ CBA ”⟩ 𝒢 G
27 1 2 3 24 25 4 8 7 6 israg φ ⟨“ CBA ”⟩ 𝒢 G C - ˙ A = C - ˙ pInv 𝒢 G B A
28 26 27 mpbid φ C - ˙ A = C - ˙ pInv 𝒢 G B A
29 28 adantr φ A mid 𝒢 G D = B C - ˙ A = C - ˙ pInv 𝒢 G B A
30 18 eqcomd φ F = C
31 30 adantr φ A mid 𝒢 G D = B F = C
32 1 2 3 4 5 6 9 25 7 ismidb φ D = pInv 𝒢 G B A A mid 𝒢 G D = B
33 32 biimpar φ A mid 𝒢 G D = B D = pInv 𝒢 G B A
34 31 33 oveq12d φ A mid 𝒢 G D = B F - ˙ D = C - ˙ pInv 𝒢 G B A
35 29 34 eqtr4d φ A mid 𝒢 G D = B C - ˙ A = F - ˙ D
36 1 2 3 19 20 21 22 23 35 tgcgrcomlr φ A mid 𝒢 G D = B A - ˙ C = D - ˙ F
37 simpr φ A mid 𝒢 G D B A = D A = D
38 18 ad2antrr φ A mid 𝒢 G D B A = D C = F
39 37 38 oveq12d φ A mid 𝒢 G D B A = D A - ˙ C = D - ˙ F
40 12 ad2antrr φ A mid 𝒢 G D B A D ⟨“ ABC ”⟩ 𝒢 G
41 4 ad2antrr φ A mid 𝒢 G D B A D G 𝒢 Tarski
42 6 ad2antrr φ A mid 𝒢 G D B A D A P
43 7 ad2antrr φ A mid 𝒢 G D B A D B P
44 8 ad2antrr φ A mid 𝒢 G D B A D C P
45 1 2 3 24 25 41 42 43 44 israg φ A mid 𝒢 G D B A D ⟨“ ABC ”⟩ 𝒢 G A - ˙ C = A - ˙ pInv 𝒢 G B C
46 40 45 mpbid φ A mid 𝒢 G D B A D A - ˙ C = A - ˙ pInv 𝒢 G B C
47 5 ad2antrr φ A mid 𝒢 G D B A D G Dim 𝒢 2
48 9 ad2antrr φ A mid 𝒢 G D B A D D P
49 1 2 3 41 47 42 48 midcl φ A mid 𝒢 G D B A D A mid 𝒢 G D P
50 simplr φ A mid 𝒢 G D B A D A mid 𝒢 G D B
51 1 3 24 41 49 43 50 tgelrnln φ A mid 𝒢 G D B A D A mid 𝒢 G D Line 𝒢 G B ran Line 𝒢 G
52 eqid pInv 𝒢 G B = pInv 𝒢 G B
53 eqid 𝒢 G = 𝒢 G
54 1 2 3 24 25 41 43 52 44 mircl φ A mid 𝒢 G D B A D pInv 𝒢 G B C P
55 simpr φ A mid 𝒢 G D B A D A D
56 1 2 3 41 47 42 48 midbtwn φ A mid 𝒢 G D B A D A mid 𝒢 G D A I D
57 1 24 3 41 42 49 48 56 btwncolg3 φ A mid 𝒢 G D B A D D A Line 𝒢 G A mid 𝒢 G D A = A mid 𝒢 G D
58 eqidd φ D = D
59 58 16 18 s3eqd φ ⟨“ DBC ”⟩ = ⟨“ DEF ”⟩
60 59 ad2antrr φ A mid 𝒢 G D B A D ⟨“ DBC ”⟩ = ⟨“ DEF ”⟩
61 13 ad2antrr φ A mid 𝒢 G D B A D ⟨“ DEF ”⟩ 𝒢 G
62 60 61 eqeltrd φ A mid 𝒢 G D B A D ⟨“ DBC ”⟩ 𝒢 G
63 1 2 3 24 25 41 48 43 44 israg φ A mid 𝒢 G D B A D ⟨“ DBC ”⟩ 𝒢 G D - ˙ C = D - ˙ pInv 𝒢 G B C
64 62 63 mpbid φ A mid 𝒢 G D B A D D - ˙ C = D - ˙ pInv 𝒢 G B C
65 1 24 3 41 42 48 49 53 44 54 2 55 57 46 64 lncgr φ A mid 𝒢 G D B A D A mid 𝒢 G D - ˙ C = A mid 𝒢 G D - ˙ pInv 𝒢 G B C
66 1 2 3 24 25 41 49 43 44 israg φ A mid 𝒢 G D B A D ⟨“ A mid 𝒢 G DBC ”⟩ 𝒢 G A mid 𝒢 G D - ˙ C = A mid 𝒢 G D - ˙ pInv 𝒢 G B C
67 65 66 mpbird φ A mid 𝒢 G D B A D ⟨“ A mid 𝒢 G DBC ”⟩ 𝒢 G
68 1 3 24 41 49 43 50 tglinerflx1 φ A mid 𝒢 G D B A D A mid 𝒢 G D A mid 𝒢 G D Line 𝒢 G B
69 1 3 24 41 49 43 50 tglinerflx2 φ A mid 𝒢 G D B A D B A mid 𝒢 G D Line 𝒢 G B
70 1 2 3 41 47 17 24 51 49 52 67 68 69 44 50 lmimid φ A mid 𝒢 G D B A D S C = pInv 𝒢 G B C
71 70 oveq2d φ A mid 𝒢 G D B A D A - ˙ S C = A - ˙ pInv 𝒢 G B C
72 46 71 eqtr4d φ A mid 𝒢 G D B A D A - ˙ C = A - ˙ S C
73 1 2 3 41 47 48 42 midcom φ A mid 𝒢 G D B A D D mid 𝒢 G A = A mid 𝒢 G D
74 73 68 eqeltrd φ A mid 𝒢 G D B A D D mid 𝒢 G A A mid 𝒢 G D Line 𝒢 G B
75 55 necomd φ A mid 𝒢 G D B A D D A
76 1 3 24 41 48 42 75 tgelrnln φ A mid 𝒢 G D B A D D Line 𝒢 G A ran Line 𝒢 G
77 1 2 3 41 42 49 48 56 tgbtwncom φ A mid 𝒢 G D B A D A mid 𝒢 G D D I A
78 1 3 24 41 48 42 49 75 77 btwnlng1 φ A mid 𝒢 G D B A D A mid 𝒢 G D D Line 𝒢 G A
79 68 78 elind φ A mid 𝒢 G D B A D A mid 𝒢 G D A mid 𝒢 G D Line 𝒢 G B D Line 𝒢 G A
80 1 3 24 41 48 42 75 tglinerflx2 φ A mid 𝒢 G D B A D A D Line 𝒢 G A
81 50 necomd φ A mid 𝒢 G D B A D B A mid 𝒢 G D
82 4 ad2antrr φ A mid 𝒢 G D B A = A mid 𝒢 G D G 𝒢 Tarski
83 6 ad2antrr φ A mid 𝒢 G D B A = A mid 𝒢 G D A P
84 9 ad2antrr φ A mid 𝒢 G D B A = A mid 𝒢 G D D P
85 5 ad2antrr φ A mid 𝒢 G D B A = A mid 𝒢 G D G Dim 𝒢 2
86 simpr φ A mid 𝒢 G D B A = A mid 𝒢 G D A = A mid 𝒢 G D
87 86 eqcomd φ A mid 𝒢 G D B A = A mid 𝒢 G D A mid 𝒢 G D = A
88 1 2 3 82 85 83 84 87 midcgr φ A mid 𝒢 G D B A = A mid 𝒢 G D A - ˙ A = A - ˙ D
89 88 eqcomd φ A mid 𝒢 G D B A = A mid 𝒢 G D A - ˙ D = A - ˙ A
90 1 2 3 82 83 84 83 89 axtgcgrid φ A mid 𝒢 G D B A = A mid 𝒢 G D A = D
91 90 ex φ A mid 𝒢 G D B A = A mid 𝒢 G D A = D
92 91 necon3d φ A mid 𝒢 G D B A D A A mid 𝒢 G D
93 92 imp φ A mid 𝒢 G D B A D A A mid 𝒢 G D
94 1 2 3 4 6 7 9 10 14 tgcgrcomlr φ B - ˙ A = E - ˙ D
95 16 oveq1d φ B - ˙ D = E - ˙ D
96 94 95 eqtr4d φ B - ˙ A = B - ˙ D
97 96 ad2antrr φ A mid 𝒢 G D B A D B - ˙ A = B - ˙ D
98 eqidd φ A mid 𝒢 G D B A D A mid 𝒢 G D = A mid 𝒢 G D
99 1 2 3 41 47 42 48 25 49 ismidb φ A mid 𝒢 G D B A D D = pInv 𝒢 G A mid 𝒢 G D A A mid 𝒢 G D = A mid 𝒢 G D
100 98 99 mpbird φ A mid 𝒢 G D B A D D = pInv 𝒢 G A mid 𝒢 G D A
101 100 oveq2d φ A mid 𝒢 G D B A D B - ˙ D = B - ˙ pInv 𝒢 G A mid 𝒢 G D A
102 97 101 eqtrd φ A mid 𝒢 G D B A D B - ˙ A = B - ˙ pInv 𝒢 G A mid 𝒢 G D A
103 1 2 3 24 25 41 43 49 42 israg φ A mid 𝒢 G D B A D ⟨“ BA mid 𝒢 G DA ”⟩ 𝒢 G B - ˙ A = B - ˙ pInv 𝒢 G A mid 𝒢 G D A
104 102 103 mpbird φ A mid 𝒢 G D B A D ⟨“ BA mid 𝒢 G DA ”⟩ 𝒢 G
105 1 2 3 24 41 51 76 79 69 80 81 93 104 ragperp φ A mid 𝒢 G D B A D A mid 𝒢 G D Line 𝒢 G B 𝒢 G D Line 𝒢 G A
106 105 orcd φ A mid 𝒢 G D B A D A mid 𝒢 G D Line 𝒢 G B 𝒢 G D Line 𝒢 G A D = A
107 1 2 3 41 47 17 24 51 48 42 islmib φ A mid 𝒢 G D B A D A = S D D mid 𝒢 G A A mid 𝒢 G D Line 𝒢 G B A mid 𝒢 G D Line 𝒢 G B 𝒢 G D Line 𝒢 G A D = A
108 74 106 107 mpbir2and φ A mid 𝒢 G D B A D A = S D
109 108 oveq1d φ A mid 𝒢 G D B A D A - ˙ S C = S D - ˙ S C
110 1 2 3 41 47 17 24 51 48 44 lmiiso φ A mid 𝒢 G D B A D S D - ˙ S C = D - ˙ C
111 18 oveq2d φ D - ˙ C = D - ˙ F
112 111 ad2antrr φ A mid 𝒢 G D B A D D - ˙ C = D - ˙ F
113 109 110 112 3eqtrd φ A mid 𝒢 G D B A D A - ˙ S C = D - ˙ F
114 72 113 eqtrd φ A mid 𝒢 G D B A D A - ˙ C = D - ˙ F
115 39 114 pm2.61dane φ A mid 𝒢 G D B A - ˙ C = D - ˙ F
116 36 115 pm2.61dane φ A - ˙ C = D - ˙ F