| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hypcgr.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hypcgr.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hypcgr.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hypcgr.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hypcgr.h | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | hypcgr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hypcgr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 8 |  | hypcgr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | hypcgr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 10 |  | hypcgr.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 11 |  | hypcgr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 12 |  | hypcgr.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 13 |  | hypcgr.2 | ⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 14 |  | hypcgr.3 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 15 |  | hypcgr.4 | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 16 |  | eqid | ⊢ ( LineG ‘ 𝐺 )  =  ( LineG ‘ 𝐺 ) | 
						
							| 17 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 18 | 1 2 3 4 5 7 10 | midcl | ⊢ ( 𝜑  →  ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 )  ∈  𝑃 ) | 
						
							| 19 |  | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) )  =  ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 20 | 1 2 3 16 17 4 18 19 9 | mircl | ⊢ ( 𝜑  →  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 )  ∈  𝑃 ) | 
						
							| 21 | 1 2 3 16 17 4 18 19 10 | mircl | ⊢ ( 𝜑  →  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 )  ∈  𝑃 ) | 
						
							| 22 | 1 2 3 16 17 4 18 19 11 | mircl | ⊢ ( 𝜑  →  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 )  ∈  𝑃 ) | 
						
							| 23 | 1 2 3 16 17 4 9 10 11 13 19 18 | mirrag | ⊢ ( 𝜑  →  〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 24 | 1 2 3 16 17 4 18 19 9 10 | miriso | ⊢ ( 𝜑  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 25 | 14 24 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) ) | 
						
							| 26 | 1 2 3 16 17 4 18 19 10 11 | miriso | ⊢ ( 𝜑  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 27 | 15 26 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ) | 
						
							| 28 | 1 2 3 4 5 10 7 | midcom | ⊢ ( 𝜑  →  ( 𝐸 ( midG ‘ 𝐺 ) 𝐵 )  =  ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 29 | 1 2 3 4 5 10 7 17 18 | ismidb | ⊢ ( 𝜑  →  ( 𝐵  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 )  ↔  ( 𝐸 ( midG ‘ 𝐺 ) 𝐵 )  =  ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ) | 
						
							| 30 | 28 29 | mpbird | ⊢ ( 𝜑  →  𝐵  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) | 
						
							| 31 |  | eqid | ⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) )  =  ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 32 | 1 2 3 4 5 6 7 8 20 21 22 12 23 25 27 30 31 | hypcgrlem2 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ) | 
						
							| 33 | 1 2 3 16 17 4 18 19 9 11 | miriso | ⊢ ( 𝜑  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 34 | 32 33 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) |