| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hypcgr.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hypcgr.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hypcgr.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hypcgr.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hypcgr.h |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | hypcgr.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hypcgr.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | hypcgr.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | hypcgr.d |  |-  ( ph -> D e. P ) | 
						
							| 10 |  | hypcgr.e |  |-  ( ph -> E e. P ) | 
						
							| 11 |  | hypcgr.f |  |-  ( ph -> F e. P ) | 
						
							| 12 |  | hypcgr.1 |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 13 |  | hypcgr.2 |  |-  ( ph -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 14 |  | hypcgr.3 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 15 |  | hypcgr.4 |  |-  ( ph -> ( B .- C ) = ( E .- F ) ) | 
						
							| 16 |  | eqid |  |-  ( LineG ` G ) = ( LineG ` G ) | 
						
							| 17 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 18 | 1 2 3 4 5 7 10 | midcl |  |-  ( ph -> ( B ( midG ` G ) E ) e. P ) | 
						
							| 19 |  | eqid |  |-  ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) | 
						
							| 20 | 1 2 3 16 17 4 18 19 9 | mircl |  |-  ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) e. P ) | 
						
							| 21 | 1 2 3 16 17 4 18 19 10 | mircl |  |-  ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) e. P ) | 
						
							| 22 | 1 2 3 16 17 4 18 19 11 | mircl |  |-  ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) e. P ) | 
						
							| 23 | 1 2 3 16 17 4 9 10 11 13 19 18 | mirrag |  |-  ( ph -> <" ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) "> e. ( raG ` G ) ) | 
						
							| 24 | 1 2 3 16 17 4 18 19 9 10 | miriso |  |-  ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) = ( D .- E ) ) | 
						
							| 25 | 14 24 | eqtr4d |  |-  ( ph -> ( A .- B ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) ) | 
						
							| 26 | 1 2 3 16 17 4 18 19 10 11 | miriso |  |-  ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) = ( E .- F ) ) | 
						
							| 27 | 15 26 | eqtr4d |  |-  ( ph -> ( B .- C ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ) | 
						
							| 28 | 1 2 3 4 5 10 7 | midcom |  |-  ( ph -> ( E ( midG ` G ) B ) = ( B ( midG ` G ) E ) ) | 
						
							| 29 | 1 2 3 4 5 10 7 17 18 | ismidb |  |-  ( ph -> ( B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) <-> ( E ( midG ` G ) B ) = ( B ( midG ` G ) E ) ) ) | 
						
							| 30 | 28 29 | mpbird |  |-  ( ph -> B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) | 
						
							| 31 |  | eqid |  |-  ( ( lInvG ` G ) ` ( ( C ( midG ` G ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ( LineG ` G ) B ) ) = ( ( lInvG ` G ) ` ( ( C ( midG ` G ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ( LineG ` G ) B ) ) | 
						
							| 32 | 1 2 3 4 5 6 7 8 20 21 22 12 23 25 27 30 31 | hypcgrlem2 |  |-  ( ph -> ( A .- C ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ) | 
						
							| 33 | 1 2 3 16 17 4 18 19 9 11 | miriso |  |-  ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) = ( D .- F ) ) | 
						
							| 34 | 32 33 | eqtrd |  |-  ( ph -> ( A .- C ) = ( D .- F ) ) |