| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hypcgr.p |
|- P = ( Base ` G ) |
| 2 |
|
hypcgr.m |
|- .- = ( dist ` G ) |
| 3 |
|
hypcgr.i |
|- I = ( Itv ` G ) |
| 4 |
|
hypcgr.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
hypcgr.h |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
hypcgr.a |
|- ( ph -> A e. P ) |
| 7 |
|
hypcgr.b |
|- ( ph -> B e. P ) |
| 8 |
|
hypcgr.c |
|- ( ph -> C e. P ) |
| 9 |
|
hypcgr.d |
|- ( ph -> D e. P ) |
| 10 |
|
hypcgr.e |
|- ( ph -> E e. P ) |
| 11 |
|
hypcgr.f |
|- ( ph -> F e. P ) |
| 12 |
|
hypcgr.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 13 |
|
hypcgr.2 |
|- ( ph -> <" D E F "> e. ( raG ` G ) ) |
| 14 |
|
hypcgr.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 15 |
|
hypcgr.4 |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
| 16 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 17 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 18 |
1 2 3 4 5 7 10
|
midcl |
|- ( ph -> ( B ( midG ` G ) E ) e. P ) |
| 19 |
|
eqid |
|- ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) |
| 20 |
1 2 3 16 17 4 18 19 9
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) e. P ) |
| 21 |
1 2 3 16 17 4 18 19 10
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) e. P ) |
| 22 |
1 2 3 16 17 4 18 19 11
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) e. P ) |
| 23 |
1 2 3 16 17 4 9 10 11 13 19 18
|
mirrag |
|- ( ph -> <" ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) "> e. ( raG ` G ) ) |
| 24 |
1 2 3 16 17 4 18 19 9 10
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) = ( D .- E ) ) |
| 25 |
14 24
|
eqtr4d |
|- ( ph -> ( A .- B ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) ) |
| 26 |
1 2 3 16 17 4 18 19 10 11
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) = ( E .- F ) ) |
| 27 |
15 26
|
eqtr4d |
|- ( ph -> ( B .- C ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ) |
| 28 |
1 2 3 4 5 10 7
|
midcom |
|- ( ph -> ( E ( midG ` G ) B ) = ( B ( midG ` G ) E ) ) |
| 29 |
1 2 3 4 5 10 7 17 18
|
ismidb |
|- ( ph -> ( B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) <-> ( E ( midG ` G ) B ) = ( B ( midG ` G ) E ) ) ) |
| 30 |
28 29
|
mpbird |
|- ( ph -> B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) |
| 31 |
|
eqid |
|- ( ( lInvG ` G ) ` ( ( C ( midG ` G ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ( LineG ` G ) B ) ) = ( ( lInvG ` G ) ` ( ( C ( midG ` G ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ( LineG ` G ) B ) ) |
| 32 |
1 2 3 4 5 6 7 8 20 21 22 12 23 25 27 30 31
|
hypcgrlem2 |
|- ( ph -> ( A .- C ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ) |
| 33 |
1 2 3 16 17 4 18 19 9 11
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) = ( D .- F ) ) |
| 34 |
32 33
|
eqtrd |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |