| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmiopp.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | lmiopp.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | lmiopp.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | lmiopp.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | lmiopp.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | lmiopp.h |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 7 |  | lmiopp.d |  |-  ( ph -> D e. ran L ) | 
						
							| 8 |  | lmiopp.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 9 |  | lmiopp.n |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 10 |  | lmiopp.a |  |-  ( ph -> A e. P ) | 
						
							| 11 |  | lmiopp.1 |  |-  ( ph -> -. A e. D ) | 
						
							| 12 | 1 2 3 5 6 9 4 7 10 | lmicl |  |-  ( ph -> ( M ` A ) e. P ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> ( M ` A ) = ( M ` A ) ) | 
						
							| 14 | 1 2 3 5 6 9 4 7 10 12 | islmib |  |-  ( ph -> ( ( M ` A ) = ( M ` A ) <-> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) ) | 
						
							| 15 | 13 14 | mpbid |  |-  ( ph -> ( ( A ( midG ` G ) ( M ` A ) ) e. D /\ ( D ( perpG ` G ) ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. D ) | 
						
							| 17 | 1 2 3 5 6 9 4 7 10 | lmilmi |  |-  ( ph -> ( M ` ( M ` A ) ) = A ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( ph -> ( ( M ` ( M ` A ) ) = ( M ` A ) <-> A = ( M ` A ) ) ) | 
						
							| 19 | 1 2 3 5 6 9 4 7 12 | lmiinv |  |-  ( ph -> ( ( M ` ( M ` A ) ) = ( M ` A ) <-> ( M ` A ) e. D ) ) | 
						
							| 20 |  | eqcom |  |-  ( A = ( M ` A ) <-> ( M ` A ) = A ) | 
						
							| 21 | 20 | a1i |  |-  ( ph -> ( A = ( M ` A ) <-> ( M ` A ) = A ) ) | 
						
							| 22 | 18 19 21 | 3bitr3d |  |-  ( ph -> ( ( M ` A ) e. D <-> ( M ` A ) = A ) ) | 
						
							| 23 | 1 2 3 5 6 9 4 7 10 | lmiinv |  |-  ( ph -> ( ( M ` A ) = A <-> A e. D ) ) | 
						
							| 24 | 22 23 | bitrd |  |-  ( ph -> ( ( M ` A ) e. D <-> A e. D ) ) | 
						
							| 25 | 11 24 | mtbird |  |-  ( ph -> -. ( M ` A ) e. D ) | 
						
							| 26 | 1 2 3 5 6 10 12 | midbtwn |  |-  ( ph -> ( A ( midG ` G ) ( M ` A ) ) e. ( A I ( M ` A ) ) ) | 
						
							| 27 | 1 2 3 8 10 12 16 11 25 26 | islnoppd |  |-  ( ph -> A O ( M ` A ) ) |