| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmiopp.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | lmiopp.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | lmiopp.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | lmiopp.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | lmiopp.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | lmiopp.h |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 7 |  | lmiopp.d |  |-  ( ph -> D e. ran L ) | 
						
							| 8 |  | lmiopp.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 9 |  | lnperpex.a |  |-  ( ph -> A e. D ) | 
						
							| 10 |  | lnperpex.q |  |-  ( ph -> Q e. P ) | 
						
							| 11 |  | lnperpex.1 |  |-  ( ph -> -. Q e. D ) | 
						
							| 12 | 5 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> G e. TarskiG ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> G e. TarskiG ) | 
						
							| 14 |  | simprl |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p e. P ) | 
						
							| 15 | 1 4 3 5 7 9 | tglnpt |  |-  ( ph -> A e. P ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ph /\ d e. D ) /\ A =/= d ) -> A e. P ) | 
						
							| 17 | 16 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> A e. P ) | 
						
							| 18 |  | simprrl |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( A L p ) ( perpG ` G ) D ) | 
						
							| 19 | 4 13 18 | perpln1 |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( A L p ) e. ran L ) | 
						
							| 20 | 1 3 4 13 17 14 19 | tglnne |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> A =/= p ) | 
						
							| 21 | 20 | necomd |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p =/= A ) | 
						
							| 22 | 1 3 4 13 14 17 21 | tgelrnln |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( p L A ) e. ran L ) | 
						
							| 23 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> D e. ran L ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> D e. ran L ) | 
						
							| 25 | 1 3 4 13 14 17 21 | tglinecom |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( p L A ) = ( A L p ) ) | 
						
							| 26 | 25 18 | eqbrtrd |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( p L A ) ( perpG ` G ) D ) | 
						
							| 27 | 1 2 3 4 13 22 24 26 | perpcom |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> D ( perpG ` G ) ( p L A ) ) | 
						
							| 28 |  | simplr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> Q O c ) | 
						
							| 29 | 10 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> Q e. P ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> Q e. P ) | 
						
							| 31 |  | simplr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> c e. P ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> c e. P ) | 
						
							| 33 |  | simprrr |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> c O p ) | 
						
							| 34 | 1 2 3 8 4 24 13 32 14 33 | oppcom |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p O c ) | 
						
							| 35 | 1 3 4 8 13 24 14 30 32 34 | lnopp2hpgb |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( Q O c <-> p ( ( hpG ` G ) ` D ) Q ) ) | 
						
							| 36 | 28 35 | mpbid |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p ( ( hpG ` G ) ` D ) Q ) | 
						
							| 37 | 27 36 | jca |  |-  ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) | 
						
							| 38 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 39 | 9 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> A e. D ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> Q O c ) | 
						
							| 41 | 1 2 3 8 4 23 12 29 31 40 | oppne2 |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> -. c e. D ) | 
						
							| 42 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> G TarskiGDim>= 2 ) | 
						
							| 43 | 1 2 3 8 4 23 12 38 39 31 41 42 | oppperpex |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> E. p e. P ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) | 
						
							| 44 | 37 43 | reximddv |  |-  ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> E. p e. P ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) | 
						
							| 45 | 1 3 4 5 7 10 8 11 | hpgerlem |  |-  ( ph -> E. c e. P Q O c ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ph /\ d e. D ) /\ A =/= d ) -> E. c e. P Q O c ) | 
						
							| 47 | 44 46 | r19.29a |  |-  ( ( ( ph /\ d e. D ) /\ A =/= d ) -> E. p e. P ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) | 
						
							| 48 | 1 3 4 5 7 9 | tglnpt2 |  |-  ( ph -> E. d e. D A =/= d ) | 
						
							| 49 | 47 48 | r19.29a |  |-  ( ph -> E. p e. P ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) |