| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmiopp.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | lmiopp.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | lmiopp.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | lmiopp.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | lmiopp.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | lmiopp.h | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 7 |  | lmiopp.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 8 |  | lmiopp.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 9 |  | lnperpex.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 10 |  | lnperpex.q | ⊢ ( 𝜑  →  𝑄  ∈  𝑃 ) | 
						
							| 11 |  | lnperpex.1 | ⊢ ( 𝜑  →  ¬  𝑄  ∈  𝐷 ) | 
						
							| 12 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝐺  ∈  TarskiG ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 14 |  | simprl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑝  ∈  𝑃 ) | 
						
							| 15 | 1 4 3 5 7 9 | tglnpt | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  →  𝐴  ∈  𝑃 ) | 
						
							| 17 | 16 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 18 |  | simprrl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) | 
						
							| 19 | 4 13 18 | perpln1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝐴 𝐿 𝑝 )  ∈  ran  𝐿 ) | 
						
							| 20 | 1 3 4 13 17 14 19 | tglnne | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝐴  ≠  𝑝 ) | 
						
							| 21 | 20 | necomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑝  ≠  𝐴 ) | 
						
							| 22 | 1 3 4 13 14 17 21 | tgelrnln | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝑝 𝐿 𝐴 )  ∈  ran  𝐿 ) | 
						
							| 23 | 7 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 25 | 1 3 4 13 14 17 21 | tglinecom | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝑝 𝐿 𝐴 )  =  ( 𝐴 𝐿 𝑝 ) ) | 
						
							| 26 | 25 18 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝑝 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) | 
						
							| 27 | 1 2 3 4 13 22 24 26 | perpcom | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 ) ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑄 𝑂 𝑐 ) | 
						
							| 29 | 10 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝑄  ∈  𝑃 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝑐  ∈  𝑃 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑐  ∈  𝑃 ) | 
						
							| 33 |  | simprrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑐 𝑂 𝑝 ) | 
						
							| 34 | 1 2 3 8 4 24 13 32 14 33 | oppcom | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑝 𝑂 𝑐 ) | 
						
							| 35 | 1 3 4 8 13 24 14 30 32 34 | lnopp2hpgb | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝑄 𝑂 𝑐  ↔  𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) | 
						
							| 36 | 28 35 | mpbid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) | 
						
							| 37 | 27 36 | jca | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  ∧  ( 𝑝  ∈  𝑃  ∧  ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) )  →  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 )  ∧  𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) | 
						
							| 38 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 39 | 9 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝐴  ∈  𝐷 ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝑄 𝑂 𝑐 ) | 
						
							| 41 | 1 2 3 8 4 23 12 29 31 40 | oppne2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  ¬  𝑐  ∈  𝐷 ) | 
						
							| 42 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 43 | 1 2 3 8 4 23 12 38 39 31 41 42 | oppperpex | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  ∃ 𝑝  ∈  𝑃 ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷  ∧  𝑐 𝑂 𝑝 ) ) | 
						
							| 44 | 37 43 | reximddv | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑄 𝑂 𝑐 )  →  ∃ 𝑝  ∈  𝑃 ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 )  ∧  𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) | 
						
							| 45 | 1 3 4 5 7 10 8 11 | hpgerlem | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  𝑃 𝑄 𝑂 𝑐 ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  →  ∃ 𝑐  ∈  𝑃 𝑄 𝑂 𝑐 ) | 
						
							| 47 | 44 46 | r19.29a | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  𝐴  ≠  𝑑 )  →  ∃ 𝑝  ∈  𝑃 ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 )  ∧  𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) | 
						
							| 48 | 1 3 4 5 7 9 | tglnpt2 | ⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐷 𝐴  ≠  𝑑 ) | 
						
							| 49 | 47 48 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝑃 ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 )  ∧  𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) |