| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmiopp.p |  | 
						
							| 2 |  | lmiopp.m |  | 
						
							| 3 |  | lmiopp.i |  | 
						
							| 4 |  | lmiopp.l |  | 
						
							| 5 |  | lmiopp.g |  | 
						
							| 6 |  | lmiopp.h |  | 
						
							| 7 |  | lmiopp.d |  | 
						
							| 8 |  | lmiopp.o |  | 
						
							| 9 |  | lnperpex.a |  | 
						
							| 10 |  | lnperpex.q |  | 
						
							| 11 |  | lnperpex.1 |  | 
						
							| 12 | 5 | ad4antr |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | simprl |  | 
						
							| 15 | 1 4 3 5 7 9 | tglnpt |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 | 16 | ad3antrrr |  | 
						
							| 18 |  | simprrl |  | 
						
							| 19 | 4 13 18 | perpln1 |  | 
						
							| 20 | 1 3 4 13 17 14 19 | tglnne |  | 
						
							| 21 | 20 | necomd |  | 
						
							| 22 | 1 3 4 13 14 17 21 | tgelrnln |  | 
						
							| 23 | 7 | ad4antr |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 1 3 4 13 14 17 21 | tglinecom |  | 
						
							| 26 | 25 18 | eqbrtrd |  | 
						
							| 27 | 1 2 3 4 13 22 24 26 | perpcom |  | 
						
							| 28 |  | simplr |  | 
						
							| 29 | 10 | ad4antr |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | simplr |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | simprrr |  | 
						
							| 34 | 1 2 3 8 4 24 13 32 14 33 | oppcom |  | 
						
							| 35 | 1 3 4 8 13 24 14 30 32 34 | lnopp2hpgb |  | 
						
							| 36 | 28 35 | mpbid |  | 
						
							| 37 | 27 36 | jca |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 9 | ad4antr |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 1 2 3 8 4 23 12 29 31 40 | oppne2 |  | 
						
							| 42 | 6 | ad4antr |  | 
						
							| 43 | 1 2 3 8 4 23 12 38 39 31 41 42 | oppperpex |  | 
						
							| 44 | 37 43 | reximddv |  | 
						
							| 45 | 1 3 4 5 7 10 8 11 | hpgerlem |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 | 44 46 | r19.29a |  | 
						
							| 48 | 1 3 4 5 7 9 | tglnpt2 |  | 
						
							| 49 | 47 48 | r19.29a |  |