Metamath Proof Explorer


Theorem lmiopp

Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses lmiopp.p 𝑃 = ( Base ‘ 𝐺 )
lmiopp.m = ( dist ‘ 𝐺 )
lmiopp.i 𝐼 = ( Itv ‘ 𝐺 )
lmiopp.l 𝐿 = ( LineG ‘ 𝐺 )
lmiopp.g ( 𝜑𝐺 ∈ TarskiG )
lmiopp.h ( 𝜑𝐺 DimTarskiG≥ 2 )
lmiopp.d ( 𝜑𝐷 ∈ ran 𝐿 )
lmiopp.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
lmiopp.n 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
lmiopp.a ( 𝜑𝐴𝑃 )
lmiopp.1 ( 𝜑 → ¬ 𝐴𝐷 )
Assertion lmiopp ( 𝜑𝐴 𝑂 ( 𝑀𝐴 ) )

Proof

Step Hyp Ref Expression
1 lmiopp.p 𝑃 = ( Base ‘ 𝐺 )
2 lmiopp.m = ( dist ‘ 𝐺 )
3 lmiopp.i 𝐼 = ( Itv ‘ 𝐺 )
4 lmiopp.l 𝐿 = ( LineG ‘ 𝐺 )
5 lmiopp.g ( 𝜑𝐺 ∈ TarskiG )
6 lmiopp.h ( 𝜑𝐺 DimTarskiG≥ 2 )
7 lmiopp.d ( 𝜑𝐷 ∈ ran 𝐿 )
8 lmiopp.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
9 lmiopp.n 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
10 lmiopp.a ( 𝜑𝐴𝑃 )
11 lmiopp.1 ( 𝜑 → ¬ 𝐴𝐷 )
12 1 2 3 5 6 9 4 7 10 lmicl ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑃 )
13 eqidd ( 𝜑 → ( 𝑀𝐴 ) = ( 𝑀𝐴 ) )
14 1 2 3 5 6 9 4 7 10 12 islmib ( 𝜑 → ( ( 𝑀𝐴 ) = ( 𝑀𝐴 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀𝐴 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀𝐴 ) ) ∨ 𝐴 = ( 𝑀𝐴 ) ) ) ) )
15 13 14 mpbid ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀𝐴 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀𝐴 ) ) ∨ 𝐴 = ( 𝑀𝐴 ) ) ) )
16 15 simpld ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀𝐴 ) ) ∈ 𝐷 )
17 1 2 3 5 6 9 4 7 10 lmilmi ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐴 ) ) = 𝐴 )
18 17 eqeq1d ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀𝐴 ) ) = ( 𝑀𝐴 ) ↔ 𝐴 = ( 𝑀𝐴 ) ) )
19 1 2 3 5 6 9 4 7 12 lmiinv ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀𝐴 ) ) = ( 𝑀𝐴 ) ↔ ( 𝑀𝐴 ) ∈ 𝐷 ) )
20 eqcom ( 𝐴 = ( 𝑀𝐴 ) ↔ ( 𝑀𝐴 ) = 𝐴 )
21 20 a1i ( 𝜑 → ( 𝐴 = ( 𝑀𝐴 ) ↔ ( 𝑀𝐴 ) = 𝐴 ) )
22 18 19 21 3bitr3d ( 𝜑 → ( ( 𝑀𝐴 ) ∈ 𝐷 ↔ ( 𝑀𝐴 ) = 𝐴 ) )
23 1 2 3 5 6 9 4 7 10 lmiinv ( 𝜑 → ( ( 𝑀𝐴 ) = 𝐴𝐴𝐷 ) )
24 22 23 bitrd ( 𝜑 → ( ( 𝑀𝐴 ) ∈ 𝐷𝐴𝐷 ) )
25 11 24 mtbird ( 𝜑 → ¬ ( 𝑀𝐴 ) ∈ 𝐷 )
26 1 2 3 5 6 10 12 midbtwn ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀𝐴 ) ) ∈ ( 𝐴 𝐼 ( 𝑀𝐴 ) ) )
27 1 2 3 8 10 12 16 11 25 26 islnoppd ( 𝜑𝐴 𝑂 ( 𝑀𝐴 ) )