| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmiopp.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | lmiopp.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | lmiopp.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | lmiopp.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | lmiopp.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | lmiopp.h | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 7 |  | lmiopp.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 8 |  | lmiopp.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 9 |  | lmiopp.n | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
						
							| 10 |  | lmiopp.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 11 |  | lmiopp.1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 12 | 1 2 3 5 6 9 4 7 10 | lmicl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 14 | 1 2 3 5 6 9 4 7 10 12 | islmib | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐴 )  ↔  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  ∨  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 15 | 13 14 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) )  ∨  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 17 | 1 2 3 5 6 9 4 7 10 | lmilmi | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) )  =  ( 𝑀 ‘ 𝐴 )  ↔  𝐴  =  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 19 | 1 2 3 5 6 9 4 7 12 | lmiinv | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) )  =  ( 𝑀 ‘ 𝐴 )  ↔  ( 𝑀 ‘ 𝐴 )  ∈  𝐷 ) ) | 
						
							| 20 |  | eqcom | ⊢ ( 𝐴  =  ( 𝑀 ‘ 𝐴 )  ↔  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝑀 ‘ 𝐴 )  ↔  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) ) | 
						
							| 22 | 18 19 21 | 3bitr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  ∈  𝐷  ↔  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) ) | 
						
							| 23 | 1 2 3 5 6 9 4 7 10 | lmiinv | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  𝐴  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 24 | 22 23 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  ∈  𝐷  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 25 | 11 24 | mtbird | ⊢ ( 𝜑  →  ¬  ( 𝑀 ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 26 | 1 2 3 5 6 10 12 | midbtwn | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) )  ∈  ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 27 | 1 2 3 8 10 12 16 11 25 26 | islnoppd | ⊢ ( 𝜑  →  𝐴 𝑂 ( 𝑀 ‘ 𝐴 ) ) |