| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hypcgr.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hypcgr.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hypcgr.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hypcgr.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hypcgr.h |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | hypcgr.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hypcgr.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | hypcgr.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | hypcgr.d |  |-  ( ph -> D e. P ) | 
						
							| 10 |  | hypcgr.e |  |-  ( ph -> E e. P ) | 
						
							| 11 |  | hypcgr.f |  |-  ( ph -> F e. P ) | 
						
							| 12 |  | hypcgr.1 |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 13 |  | hypcgr.2 |  |-  ( ph -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 14 |  | hypcgr.3 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 15 |  | hypcgr.4 |  |-  ( ph -> ( B .- C ) = ( E .- F ) ) | 
						
							| 16 |  | hypcgrlem2.b |  |-  ( ph -> B = E ) | 
						
							| 17 |  | hypcgrlem2.s |  |-  S = ( ( lInvG ` G ) ` ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ) | 
						
							| 18 | 4 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> G e. TarskiG ) | 
						
							| 19 | 5 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> G TarskiGDim>= 2 ) | 
						
							| 20 | 6 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> A e. P ) | 
						
							| 21 | 7 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> B e. P ) | 
						
							| 22 | 8 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> C e. P ) | 
						
							| 23 |  | eqid |  |-  ( LineG ` G ) = ( LineG ` G ) | 
						
							| 24 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 25 |  | eqid |  |-  ( ( pInvG ` G ) ` B ) = ( ( pInvG ` G ) ` B ) | 
						
							| 26 | 9 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> D e. P ) | 
						
							| 27 | 1 2 3 23 24 18 21 25 26 | mircl |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( pInvG ` G ) ` B ) ` D ) e. P ) | 
						
							| 28 | 10 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> E e. P ) | 
						
							| 29 | 12 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 30 |  | eqidd |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( pInvG ` G ) ` B ) ` D ) = ( ( ( pInvG ` G ) ` B ) ` D ) ) | 
						
							| 31 | 16 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> B = E ) | 
						
							| 32 | 1 2 3 23 24 18 21 25 28 | mirinv |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( ( pInvG ` G ) ` B ) ` E ) = E <-> B = E ) ) | 
						
							| 33 | 31 32 | mpbird |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( pInvG ` G ) ` B ) ` E ) = E ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> E = ( ( ( pInvG ` G ) ` B ) ` E ) ) | 
						
							| 35 | 11 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> F e. P ) | 
						
							| 36 | 1 2 3 18 19 22 35 | midcom |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( C ( midG ` G ) F ) = ( F ( midG ` G ) C ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( C ( midG ` G ) F ) = B ) | 
						
							| 38 | 36 37 | eqtr3d |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( F ( midG ` G ) C ) = B ) | 
						
							| 39 | 1 2 3 18 19 35 22 24 21 | ismidb |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( C = ( ( ( pInvG ` G ) ` B ) ` F ) <-> ( F ( midG ` G ) C ) = B ) ) | 
						
							| 40 | 38 39 | mpbird |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> C = ( ( ( pInvG ` G ) ` B ) ` F ) ) | 
						
							| 41 | 30 34 40 | s3eqd |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> <" ( ( ( pInvG ` G ) ` B ) ` D ) E C "> = <" ( ( ( pInvG ` G ) ` B ) ` D ) ( ( ( pInvG ` G ) ` B ) ` E ) ( ( ( pInvG ` G ) ` B ) ` F ) "> ) | 
						
							| 42 | 13 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 43 | 1 2 3 23 24 18 26 28 35 42 25 21 | mirrag |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> <" ( ( ( pInvG ` G ) ` B ) ` D ) ( ( ( pInvG ` G ) ` B ) ` E ) ( ( ( pInvG ` G ) ` B ) ` F ) "> e. ( raG ` G ) ) | 
						
							| 44 | 41 43 | eqeltrd |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> <" ( ( ( pInvG ` G ) ` B ) ` D ) E C "> e. ( raG ` G ) ) | 
						
							| 45 | 14 | adantr |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( A .- B ) = ( D .- E ) ) | 
						
							| 46 | 1 2 3 23 24 18 21 25 26 28 | miriso |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( ( pInvG ` G ) ` B ) ` D ) .- ( ( ( pInvG ` G ) ` B ) ` E ) ) = ( D .- E ) ) | 
						
							| 47 | 33 | oveq2d |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( ( pInvG ` G ) ` B ) ` D ) .- ( ( ( pInvG ` G ) ` B ) ` E ) ) = ( ( ( ( pInvG ` G ) ` B ) ` D ) .- E ) ) | 
						
							| 48 | 45 46 47 | 3eqtr2d |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( A .- B ) = ( ( ( ( pInvG ` G ) ` B ) ` D ) .- E ) ) | 
						
							| 49 | 31 | oveq1d |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( B .- C ) = ( E .- C ) ) | 
						
							| 50 |  | eqid |  |-  ( ( lInvG ` G ) ` ( ( A ( midG ` G ) ( ( ( pInvG ` G ) ` B ) ` D ) ) ( LineG ` G ) B ) ) = ( ( lInvG ` G ) ` ( ( A ( midG ` G ) ( ( ( pInvG ` G ) ` B ) ` D ) ) ( LineG ` G ) B ) ) | 
						
							| 51 |  | eqidd |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> C = C ) | 
						
							| 52 | 1 2 3 18 19 20 21 22 27 28 22 29 44 48 49 31 50 51 | hypcgrlem1 |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( A .- C ) = ( ( ( ( pInvG ` G ) ` B ) ` D ) .- C ) ) | 
						
							| 53 | 40 | oveq2d |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( ( pInvG ` G ) ` B ) ` D ) .- C ) = ( ( ( ( pInvG ` G ) ` B ) ` D ) .- ( ( ( pInvG ` G ) ` B ) ` F ) ) ) | 
						
							| 54 | 1 2 3 23 24 18 21 25 26 35 | miriso |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( ( ( ( pInvG ` G ) ` B ) ` D ) .- ( ( ( pInvG ` G ) ` B ) ` F ) ) = ( D .- F ) ) | 
						
							| 55 | 52 53 54 | 3eqtrd |  |-  ( ( ph /\ ( C ( midG ` G ) F ) = B ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 56 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> G e. TarskiG ) | 
						
							| 57 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> G TarskiGDim>= 2 ) | 
						
							| 58 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> A e. P ) | 
						
							| 59 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> B e. P ) | 
						
							| 60 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> C e. P ) | 
						
							| 61 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> D e. P ) | 
						
							| 62 | 10 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> E e. P ) | 
						
							| 63 | 11 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> F e. P ) | 
						
							| 64 | 12 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 65 | 13 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 66 | 14 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> ( A .- B ) = ( D .- E ) ) | 
						
							| 67 | 15 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> ( B .- C ) = ( E .- F ) ) | 
						
							| 68 | 16 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> B = E ) | 
						
							| 69 |  | eqid |  |-  ( ( lInvG ` G ) ` ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) = ( ( lInvG ` G ) ` ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) | 
						
							| 70 |  | simpr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> C = F ) | 
						
							| 71 | 1 2 3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | hypcgrlem1 |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = F ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 72 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> G e. TarskiG ) | 
						
							| 73 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> G TarskiGDim>= 2 ) | 
						
							| 74 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> A e. P ) | 
						
							| 75 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> B e. P ) | 
						
							| 76 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> C e. P ) | 
						
							| 77 | 11 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> F e. P ) | 
						
							| 78 | 1 2 3 72 73 76 77 | midcl |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) e. P ) | 
						
							| 79 |  | simplr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) =/= B ) | 
						
							| 80 | 1 3 23 72 78 75 79 | tgelrnln |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) e. ran ( LineG ` G ) ) | 
						
							| 81 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> D e. P ) | 
						
							| 82 | 1 2 3 72 73 17 23 80 81 | lmicl |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( S ` D ) e. P ) | 
						
							| 83 | 10 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> E e. P ) | 
						
							| 84 | 1 2 3 72 73 17 23 80 83 | lmicl |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( S ` E ) e. P ) | 
						
							| 85 | 1 2 3 72 73 17 23 80 77 | lmicl |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( S ` F ) e. P ) | 
						
							| 86 | 12 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 87 | 1 2 3 72 73 17 23 80 | lmimot |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> S e. ( G Ismt G ) ) | 
						
							| 88 | 13 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> <" D E F "> e. ( raG ` G ) ) | 
						
							| 89 | 1 2 3 23 24 72 81 83 77 87 88 | motrag |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> <" ( S ` D ) ( S ` E ) ( S ` F ) "> e. ( raG ` G ) ) | 
						
							| 90 | 14 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( A .- B ) = ( D .- E ) ) | 
						
							| 91 | 1 2 3 72 73 17 23 80 81 83 | lmiiso |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( ( S ` D ) .- ( S ` E ) ) = ( D .- E ) ) | 
						
							| 92 | 90 91 | eqtr4d |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( A .- B ) = ( ( S ` D ) .- ( S ` E ) ) ) | 
						
							| 93 | 15 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( B .- C ) = ( E .- F ) ) | 
						
							| 94 | 1 2 3 72 73 17 23 80 83 77 | lmiiso |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( ( S ` E ) .- ( S ` F ) ) = ( E .- F ) ) | 
						
							| 95 | 93 94 | eqtr4d |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( B .- C ) = ( ( S ` E ) .- ( S ` F ) ) ) | 
						
							| 96 | 1 3 23 72 78 75 79 | tglinerflx2 |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> B e. ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ) | 
						
							| 97 | 1 2 3 72 73 17 23 80 75 96 | lmicinv |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( S ` B ) = B ) | 
						
							| 98 | 16 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> B = E ) | 
						
							| 99 | 98 | fveq2d |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( S ` B ) = ( S ` E ) ) | 
						
							| 100 | 97 99 | eqtr3d |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> B = ( S ` E ) ) | 
						
							| 101 |  | eqid |  |-  ( ( lInvG ` G ) ` ( ( A ( midG ` G ) ( S ` D ) ) ( LineG ` G ) B ) ) = ( ( lInvG ` G ) ` ( ( A ( midG ` G ) ( S ` D ) ) ( LineG ` G ) B ) ) | 
						
							| 102 | 1 2 3 72 73 76 77 | midcom |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) = ( F ( midG ` G ) C ) ) | 
						
							| 103 | 1 3 23 72 78 75 79 | tglinerflx1 |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) e. ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ) | 
						
							| 104 | 102 103 | eqeltrrd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( F ( midG ` G ) C ) e. ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ) | 
						
							| 105 |  | simpr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> C =/= F ) | 
						
							| 106 | 105 | necomd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> F =/= C ) | 
						
							| 107 | 1 3 23 72 77 76 106 | tgelrnln |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( F ( LineG ` G ) C ) e. ran ( LineG ` G ) ) | 
						
							| 108 | 1 2 3 72 73 76 77 | midbtwn |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) e. ( C I F ) ) | 
						
							| 109 | 1 2 3 72 76 78 77 108 | tgbtwncom |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) e. ( F I C ) ) | 
						
							| 110 | 1 3 23 72 77 76 78 106 109 | btwnlng1 |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) e. ( F ( LineG ` G ) C ) ) | 
						
							| 111 | 103 110 | elind |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) e. ( ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) i^i ( F ( LineG ` G ) C ) ) ) | 
						
							| 112 | 1 3 23 72 77 76 106 | tglinerflx2 |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> C e. ( F ( LineG ` G ) C ) ) | 
						
							| 113 | 79 | necomd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> B =/= ( C ( midG ` G ) F ) ) | 
						
							| 114 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> G e. TarskiG ) | 
						
							| 115 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> C e. P ) | 
						
							| 116 | 11 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> F e. P ) | 
						
							| 117 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> G TarskiGDim>= 2 ) | 
						
							| 118 |  | simpr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> C = ( C ( midG ` G ) F ) ) | 
						
							| 119 | 118 | eqcomd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> ( C ( midG ` G ) F ) = C ) | 
						
							| 120 | 1 2 3 114 117 115 116 119 | midcgr |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> ( C .- C ) = ( C .- F ) ) | 
						
							| 121 | 120 | eqcomd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> ( C .- F ) = ( C .- C ) ) | 
						
							| 122 | 1 2 3 114 115 116 115 121 | axtgcgrid |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C = ( C ( midG ` G ) F ) ) -> C = F ) | 
						
							| 123 | 122 | ex |  |-  ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) -> ( C = ( C ( midG ` G ) F ) -> C = F ) ) | 
						
							| 124 | 123 | necon3d |  |-  ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) -> ( C =/= F -> C =/= ( C ( midG ` G ) F ) ) ) | 
						
							| 125 | 124 | imp |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> C =/= ( C ( midG ` G ) F ) ) | 
						
							| 126 | 98 | eqcomd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> E = B ) | 
						
							| 127 |  | eqidd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C ( midG ` G ) F ) = ( C ( midG ` G ) F ) ) | 
						
							| 128 | 1 2 3 72 73 76 77 24 78 | ismidb |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( F = ( ( ( pInvG ` G ) ` ( C ( midG ` G ) F ) ) ` C ) <-> ( C ( midG ` G ) F ) = ( C ( midG ` G ) F ) ) ) | 
						
							| 129 | 127 128 | mpbird |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> F = ( ( ( pInvG ` G ) ` ( C ( midG ` G ) F ) ) ` C ) ) | 
						
							| 130 | 126 129 | oveq12d |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( E .- F ) = ( B .- ( ( ( pInvG ` G ) ` ( C ( midG ` G ) F ) ) ` C ) ) ) | 
						
							| 131 | 93 130 | eqtrd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( B .- C ) = ( B .- ( ( ( pInvG ` G ) ` ( C ( midG ` G ) F ) ) ` C ) ) ) | 
						
							| 132 | 1 2 3 23 24 72 75 78 76 | israg |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( <" B ( C ( midG ` G ) F ) C "> e. ( raG ` G ) <-> ( B .- C ) = ( B .- ( ( ( pInvG ` G ) ` ( C ( midG ` G ) F ) ) ` C ) ) ) ) | 
						
							| 133 | 131 132 | mpbird |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> <" B ( C ( midG ` G ) F ) C "> e. ( raG ` G ) ) | 
						
							| 134 | 1 2 3 23 72 80 107 111 96 112 113 125 133 | ragperp |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ( perpG ` G ) ( F ( LineG ` G ) C ) ) | 
						
							| 135 | 134 | orcd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ( perpG ` G ) ( F ( LineG ` G ) C ) \/ F = C ) ) | 
						
							| 136 | 1 2 3 72 73 17 23 80 77 76 | islmib |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( C = ( S ` F ) <-> ( ( F ( midG ` G ) C ) e. ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) /\ ( ( ( C ( midG ` G ) F ) ( LineG ` G ) B ) ( perpG ` G ) ( F ( LineG ` G ) C ) \/ F = C ) ) ) ) | 
						
							| 137 | 104 135 136 | mpbir2and |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> C = ( S ` F ) ) | 
						
							| 138 | 1 2 3 72 73 74 75 76 82 84 85 86 89 92 95 100 101 137 | hypcgrlem1 |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( A .- C ) = ( ( S ` D ) .- ( S ` F ) ) ) | 
						
							| 139 | 1 2 3 72 73 17 23 80 81 77 | lmiiso |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( ( S ` D ) .- ( S ` F ) ) = ( D .- F ) ) | 
						
							| 140 | 138 139 | eqtrd |  |-  ( ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) /\ C =/= F ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 141 | 71 140 | pm2.61dane |  |-  ( ( ph /\ ( C ( midG ` G ) F ) =/= B ) -> ( A .- C ) = ( D .- F ) ) | 
						
							| 142 | 55 141 | pm2.61dane |  |-  ( ph -> ( A .- C ) = ( D .- F ) ) |