| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismid.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | ismid.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | ismid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | ismid.1 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | lmif.m |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 7 |  | lmif.l |  |-  L = ( LineG ` G ) | 
						
							| 8 |  | lmif.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 |  | lmiiso.1 |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | lmiiso.2 |  |-  ( ph -> B e. P ) | 
						
							| 11 |  | eqid |  |-  ( ( pInvG ` G ) ` ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) = ( ( pInvG ` G ) ` ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | lmiisolem |  |-  ( ph -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |