Description: The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |- P = ( Base ` G ) |
|
ismid.d | |- .- = ( dist ` G ) |
||
ismid.i | |- I = ( Itv ` G ) |
||
ismid.g | |- ( ph -> G e. TarskiG ) |
||
ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
||
lmif.m | |- M = ( ( lInvG ` G ) ` D ) |
||
lmif.l | |- L = ( LineG ` G ) |
||
lmif.d | |- ( ph -> D e. ran L ) |
||
lmiiso.1 | |- ( ph -> A e. P ) |
||
lmiiso.2 | |- ( ph -> B e. P ) |
||
Assertion | lmiiso | |- ( ph -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |- P = ( Base ` G ) |
|
2 | ismid.d | |- .- = ( dist ` G ) |
|
3 | ismid.i | |- I = ( Itv ` G ) |
|
4 | ismid.g | |- ( ph -> G e. TarskiG ) |
|
5 | ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
|
6 | lmif.m | |- M = ( ( lInvG ` G ) ` D ) |
|
7 | lmif.l | |- L = ( LineG ` G ) |
|
8 | lmif.d | |- ( ph -> D e. ran L ) |
|
9 | lmiiso.1 | |- ( ph -> A e. P ) |
|
10 | lmiiso.2 | |- ( ph -> B e. P ) |
|
11 | eqid | |- ( ( pInvG ` G ) ` ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) = ( ( pInvG ` G ) ` ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) ) |
|
12 | eqid | |- ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) = ( ( A ( midG ` G ) ( M ` A ) ) ( midG ` G ) ( B ( midG ` G ) ( M ` B ) ) ) |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 12 | lmiisolem | |- ( ph -> ( ( M ` A ) .- ( M ` B ) ) = ( A .- B ) ) |