| Step | Hyp | Ref | Expression | 
						
							| 1 |  | israg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | israg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | israg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | israg.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | israg.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | israg.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | israg.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | israg.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | israg.c |  |-  ( ph -> C e. P ) | 
						
							| 10 |  | motrag.f |  |-  ( ph -> F e. ( G Ismt G ) ) | 
						
							| 11 |  | motrag.1 |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 12 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 13 | 1 2 6 10 7 | motcl |  |-  ( ph -> ( F ` A ) e. P ) | 
						
							| 14 | 1 2 6 10 8 | motcl |  |-  ( ph -> ( F ` B ) e. P ) | 
						
							| 15 | 1 2 6 10 9 | motcl |  |-  ( ph -> ( F ` C ) e. P ) | 
						
							| 16 |  | eqidd |  |-  ( ph -> ( F ` A ) = ( F ` A ) ) | 
						
							| 17 |  | eqidd |  |-  ( ph -> ( F ` B ) = ( F ` B ) ) | 
						
							| 18 |  | eqidd |  |-  ( ph -> ( F ` C ) = ( F ` C ) ) | 
						
							| 19 | 1 2 12 6 7 8 9 16 17 18 10 | motcgr3 |  |-  ( ph -> <" A B C "> ( cgrG ` G ) <" ( F ` A ) ( F ` B ) ( F ` C ) "> ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 12 13 14 15 11 19 | ragcgr |  |-  ( ph -> <" ( F ` A ) ( F ` B ) ( F ` C ) "> e. ( raG ` G ) ) |