| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
ragcgr.c |
|- .~ = ( cgrG ` G ) |
| 11 |
|
ragcgr.d |
|- ( ph -> D e. P ) |
| 12 |
|
ragcgr.e |
|- ( ph -> E e. P ) |
| 13 |
|
ragcgr.f |
|- ( ph -> F e. P ) |
| 14 |
|
ragcgr.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 15 |
|
ragcgr.2 |
|- ( ph -> <" A B C "> .~ <" D E F "> ) |
| 16 |
|
eqidd |
|- ( ( ph /\ B = C ) -> D = D ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ B = C ) -> G e. TarskiG ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ B = C ) -> B e. P ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ B = C ) -> C e. P ) |
| 20 |
12
|
adantr |
|- ( ( ph /\ B = C ) -> E e. P ) |
| 21 |
13
|
adantr |
|- ( ( ph /\ B = C ) -> F e. P ) |
| 22 |
7
|
adantr |
|- ( ( ph /\ B = C ) -> A e. P ) |
| 23 |
11
|
adantr |
|- ( ( ph /\ B = C ) -> D e. P ) |
| 24 |
15
|
adantr |
|- ( ( ph /\ B = C ) -> <" A B C "> .~ <" D E F "> ) |
| 25 |
1 2 3 10 17 22 18 19 23 20 21 24
|
cgr3simp2 |
|- ( ( ph /\ B = C ) -> ( B .- C ) = ( E .- F ) ) |
| 26 |
|
simpr |
|- ( ( ph /\ B = C ) -> B = C ) |
| 27 |
1 2 3 17 18 19 20 21 25 26
|
tgcgreq |
|- ( ( ph /\ B = C ) -> E = F ) |
| 28 |
|
eqidd |
|- ( ( ph /\ B = C ) -> F = F ) |
| 29 |
16 27 28
|
s3eqd |
|- ( ( ph /\ B = C ) -> <" D E F "> = <" D F F "> ) |
| 30 |
1 2 3 4 5 17 23 21 20
|
ragtrivb |
|- ( ( ph /\ B = C ) -> <" D F F "> e. ( raG ` G ) ) |
| 31 |
29 30
|
eqeltrd |
|- ( ( ph /\ B = C ) -> <" D E F "> e. ( raG ` G ) ) |
| 32 |
14
|
adantr |
|- ( ( ph /\ B =/= C ) -> <" A B C "> e. ( raG ` G ) ) |
| 33 |
6
|
adantr |
|- ( ( ph /\ B =/= C ) -> G e. TarskiG ) |
| 34 |
7
|
adantr |
|- ( ( ph /\ B =/= C ) -> A e. P ) |
| 35 |
8
|
adantr |
|- ( ( ph /\ B =/= C ) -> B e. P ) |
| 36 |
9
|
adantr |
|- ( ( ph /\ B =/= C ) -> C e. P ) |
| 37 |
1 2 3 4 5 33 34 35 36
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
| 38 |
32 37
|
mpbid |
|- ( ( ph /\ B =/= C ) -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
| 39 |
13
|
adantr |
|- ( ( ph /\ B =/= C ) -> F e. P ) |
| 40 |
11
|
adantr |
|- ( ( ph /\ B =/= C ) -> D e. P ) |
| 41 |
12
|
adantr |
|- ( ( ph /\ B =/= C ) -> E e. P ) |
| 42 |
15
|
adantr |
|- ( ( ph /\ B =/= C ) -> <" A B C "> .~ <" D E F "> ) |
| 43 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp3 |
|- ( ( ph /\ B =/= C ) -> ( C .- A ) = ( F .- D ) ) |
| 44 |
1 2 3 33 36 34 39 40 43
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( A .- C ) = ( D .- F ) ) |
| 45 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 46 |
1 2 3 4 5 33 35 45 36
|
mircl |
|- ( ( ph /\ B =/= C ) -> ( ( S ` B ) ` C ) e. P ) |
| 47 |
|
eqid |
|- ( S ` E ) = ( S ` E ) |
| 48 |
1 2 3 4 5 33 41 47 39
|
mircl |
|- ( ( ph /\ B =/= C ) -> ( ( S ` E ) ` F ) e. P ) |
| 49 |
|
simpr |
|- ( ( ph /\ B =/= C ) -> B =/= C ) |
| 50 |
49
|
necomd |
|- ( ( ph /\ B =/= C ) -> C =/= B ) |
| 51 |
1 2 3 4 5 33 35 45 36
|
mirbtwn |
|- ( ( ph /\ B =/= C ) -> B e. ( ( ( S ` B ) ` C ) I C ) ) |
| 52 |
1 2 3 33 46 35 36 51
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> B e. ( C I ( ( S ` B ) ` C ) ) ) |
| 53 |
1 2 3 4 5 33 41 47 39
|
mirbtwn |
|- ( ( ph /\ B =/= C ) -> E e. ( ( ( S ` E ) ` F ) I F ) ) |
| 54 |
1 2 3 33 48 41 39 53
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> E e. ( F I ( ( S ` E ) ` F ) ) ) |
| 55 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp2 |
|- ( ( ph /\ B =/= C ) -> ( B .- C ) = ( E .- F ) ) |
| 56 |
1 2 3 33 35 36 41 39 55
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( C .- B ) = ( F .- E ) ) |
| 57 |
1 2 3 4 5 33 35 45 36
|
mircgr |
|- ( ( ph /\ B =/= C ) -> ( B .- ( ( S ` B ) ` C ) ) = ( B .- C ) ) |
| 58 |
1 2 3 4 5 33 41 47 39
|
mircgr |
|- ( ( ph /\ B =/= C ) -> ( E .- ( ( S ` E ) ` F ) ) = ( E .- F ) ) |
| 59 |
55 57 58
|
3eqtr4d |
|- ( ( ph /\ B =/= C ) -> ( B .- ( ( S ` B ) ` C ) ) = ( E .- ( ( S ` E ) ` F ) ) ) |
| 60 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp1 |
|- ( ( ph /\ B =/= C ) -> ( A .- B ) = ( D .- E ) ) |
| 61 |
1 2 3 33 34 35 40 41 60
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( B .- A ) = ( E .- D ) ) |
| 62 |
1 2 3 33 36 35 46 39 41 48 34 40 50 52 54 56 59 43 61
|
axtg5seg |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` B ) ` C ) .- A ) = ( ( ( S ` E ) ` F ) .- D ) ) |
| 63 |
1 2 3 33 46 34 48 40 62
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( A .- ( ( S ` B ) ` C ) ) = ( D .- ( ( S ` E ) ` F ) ) ) |
| 64 |
38 44 63
|
3eqtr3d |
|- ( ( ph /\ B =/= C ) -> ( D .- F ) = ( D .- ( ( S ` E ) ` F ) ) ) |
| 65 |
1 2 3 4 5 33 40 41 39
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" D E F "> e. ( raG ` G ) <-> ( D .- F ) = ( D .- ( ( S ` E ) ` F ) ) ) ) |
| 66 |
64 65
|
mpbird |
|- ( ( ph /\ B =/= C ) -> <" D E F "> e. ( raG ` G ) ) |
| 67 |
31 66
|
pm2.61dane |
|- ( ph -> <" D E F "> e. ( raG ` G ) ) |