| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 10 |
|
ragcgr.c |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
| 11 |
|
ragcgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 12 |
|
ragcgr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 13 |
|
ragcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 14 |
|
ragcgr.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 15 |
|
ragcgr.2 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 16 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐷 = 𝐷 ) |
| 17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 20 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 ∈ 𝑃 ) |
| 21 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐹 ∈ 𝑃 ) |
| 22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 23 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐷 ∈ 𝑃 ) |
| 24 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 25 |
1 2 3 10 17 22 18 19 23 20 21 24
|
cgr3simp2 |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
| 27 |
1 2 3 17 18 19 20 21 25 26
|
tgcgreq |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 = 𝐹 ) |
| 28 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐹 = 𝐹 ) |
| 29 |
16 27 28
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 = 〈“ 𝐷 𝐹 𝐹 ”〉 ) |
| 30 |
1 2 3 4 5 17 23 21 20
|
ragtrivb |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 〈“ 𝐷 𝐹 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 31 |
29 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 32 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 34 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 36 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 37 |
1 2 3 4 5 33 34 35 36
|
israg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
| 38 |
32 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 39 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ∈ 𝑃 ) |
| 40 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ 𝑃 ) |
| 41 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ 𝑃 ) |
| 42 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 43 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp3 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 44 |
1 2 3 33 36 34 39 40 43
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 45 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
| 46 |
1 2 3 4 5 33 35 45 36
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
| 47 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐸 ) = ( 𝑆 ‘ 𝐸 ) |
| 48 |
1 2 3 4 5 33 41 47 39
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 50 |
49
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ≠ 𝐵 ) |
| 51 |
1 2 3 4 5 33 35 45 36
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) 𝐼 𝐶 ) ) |
| 52 |
1 2 3 33 46 35 36 51
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 53 |
1 2 3 4 5 33 41 47 39
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) 𝐼 𝐹 ) ) |
| 54 |
1 2 3 33 48 41 39 53
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ ( 𝐹 𝐼 ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
| 55 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 56 |
1 2 3 33 35 36 41 39 55
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐵 ) = ( 𝐹 − 𝐸 ) ) |
| 57 |
1 2 3 4 5 33 35 45 36
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |
| 58 |
1 2 3 4 5 33 41 47 39
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ) = ( 𝐸 − 𝐹 ) ) |
| 59 |
55 57 58
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐸 − ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
| 60 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp1 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 61 |
1 2 3 33 34 35 40 41 60
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 62 |
1 2 3 33 36 35 46 39 41 48 34 40 50 52 54 56 59 43 61
|
axtg5seg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − 𝐴 ) = ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) − 𝐷 ) ) |
| 63 |
1 2 3 33 46 34 48 40 62
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
| 64 |
38 44 63
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐷 − 𝐹 ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
| 65 |
1 2 3 4 5 33 40 41 39
|
israg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐷 − 𝐹 ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐹 ) ) ) ) |
| 66 |
64 65
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 67 |
31 66
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |