Metamath Proof Explorer


Theorem motrag

Description: Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019)

Ref Expression
Hypotheses israg.p P=BaseG
israg.d -˙=distG
israg.i I=ItvG
israg.l L=Line𝒢G
israg.s S=pInv𝒢G
israg.g φG𝒢Tarski
israg.a φAP
israg.b φBP
israg.c φCP
motrag.f φFGIsmtG
motrag.1 φ⟨“ABC”⟩𝒢G
Assertion motrag φ⟨“FAFBFC”⟩𝒢G

Proof

Step Hyp Ref Expression
1 israg.p P=BaseG
2 israg.d -˙=distG
3 israg.i I=ItvG
4 israg.l L=Line𝒢G
5 israg.s S=pInv𝒢G
6 israg.g φG𝒢Tarski
7 israg.a φAP
8 israg.b φBP
9 israg.c φCP
10 motrag.f φFGIsmtG
11 motrag.1 φ⟨“ABC”⟩𝒢G
12 eqid 𝒢G=𝒢G
13 1 2 6 10 7 motcl φFAP
14 1 2 6 10 8 motcl φFBP
15 1 2 6 10 9 motcl φFCP
16 eqidd φFA=FA
17 eqidd φFB=FB
18 eqidd φFC=FC
19 1 2 12 6 7 8 9 16 17 18 10 motcgr3 φ⟨“ABC”⟩𝒢G⟨“FAFBFC”⟩
20 1 2 3 4 5 6 7 8 9 12 13 14 15 11 19 ragcgr φ⟨“FAFBFC”⟩𝒢G