| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hypcgr.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hypcgr.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hypcgr.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hypcgr.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hypcgr.h | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | hypcgr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hypcgr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 8 |  | hypcgr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | hypcgr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 10 |  | hypcgr.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 11 |  | hypcgr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 12 |  | hypcgr.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 13 |  | hypcgr.2 | ⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 14 |  | hypcgr.3 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 15 |  | hypcgr.4 | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 16 |  | hypcgrlem2.b | ⊢ ( 𝜑  →  𝐵  =  𝐸 ) | 
						
							| 17 |  | hypcgrlem2.s | ⊢ 𝑆  =  ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 18 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 19 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 21 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 22 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 23 |  | eqid | ⊢ ( LineG ‘ 𝐺 )  =  ( LineG ‘ 𝐺 ) | 
						
							| 24 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 25 |  | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 )  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) | 
						
							| 26 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐷  ∈  𝑃 ) | 
						
							| 27 | 1 2 3 23 24 18 21 25 26 | mircl | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  ∈  𝑃 ) | 
						
							| 28 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐸  ∈  𝑃 ) | 
						
							| 29 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 30 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) | 
						
							| 31 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐵  =  𝐸 ) | 
						
							| 32 | 1 2 3 23 24 18 21 25 28 | mirinv | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 )  =  𝐸  ↔  𝐵  =  𝐸 ) ) | 
						
							| 33 | 31 32 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 )  =  𝐸 ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐸  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) | 
						
							| 35 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐹  ∈  𝑃 ) | 
						
							| 36 | 1 2 3 18 19 22 35 | midcom | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 ) | 
						
							| 38 | 36 37 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 )  =  𝐵 ) | 
						
							| 39 | 1 2 3 18 19 35 22 24 21 | ismidb | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐶  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 )  ↔  ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 )  =  𝐵 ) ) | 
						
							| 40 | 38 39 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐶  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) | 
						
							| 41 | 30 34 40 | s3eqd | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) 𝐸 𝐶 ”〉  =  〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ”〉 ) | 
						
							| 42 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 43 | 1 2 3 23 24 18 26 28 35 42 25 21 | mirrag | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 44 | 41 43 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) 𝐸 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 45 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 46 | 1 2 3 23 24 18 21 25 26 28 | miriso | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 47 | 33 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  𝐸 ) ) | 
						
							| 48 | 45 46 47 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐴  −  𝐵 )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  𝐸 ) ) | 
						
							| 49 | 31 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐶 ) ) | 
						
							| 50 |  | eqid | ⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) )  =  ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 51 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  𝐶  =  𝐶 ) | 
						
							| 52 | 1 2 3 18 19 20 21 22 27 28 22 29 44 48 49 31 50 51 | hypcgrlem1 | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐴  −  𝐶 )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  𝐶 ) ) | 
						
							| 53 | 40 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  𝐶 )  =  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) ) | 
						
							| 54 | 1 2 3 23 24 18 21 25 26 35 | miriso | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 )  −  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 55 | 52 53 54 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐵 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 56 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐺  ∈  TarskiG ) | 
						
							| 57 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 58 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐴  ∈  𝑃 ) | 
						
							| 59 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐵  ∈  𝑃 ) | 
						
							| 60 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐶  ∈  𝑃 ) | 
						
							| 61 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐷  ∈  𝑃 ) | 
						
							| 62 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐸  ∈  𝑃 ) | 
						
							| 63 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐹  ∈  𝑃 ) | 
						
							| 64 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 65 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 66 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 67 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 68 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐵  =  𝐸 ) | 
						
							| 69 |  | eqid | ⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) )  =  ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 70 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  𝐶  =  𝐹 ) | 
						
							| 71 | 1 2 3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | hypcgrlem1 | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  𝐹 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 72 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐺  ∈  TarskiG ) | 
						
							| 73 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 74 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐴  ∈  𝑃 ) | 
						
							| 75 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐵  ∈  𝑃 ) | 
						
							| 76 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐶  ∈  𝑃 ) | 
						
							| 77 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐹  ∈  𝑃 ) | 
						
							| 78 | 1 2 3 72 73 76 77 | midcl | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ∈  𝑃 ) | 
						
							| 79 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 ) | 
						
							| 80 | 1 3 23 72 78 75 79 | tgelrnln | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 )  ∈  ran  ( LineG ‘ 𝐺 ) ) | 
						
							| 81 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐷  ∈  𝑃 ) | 
						
							| 82 | 1 2 3 72 73 17 23 80 81 | lmicl | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝑆 ‘ 𝐷 )  ∈  𝑃 ) | 
						
							| 83 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐸  ∈  𝑃 ) | 
						
							| 84 | 1 2 3 72 73 17 23 80 83 | lmicl | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝑆 ‘ 𝐸 )  ∈  𝑃 ) | 
						
							| 85 | 1 2 3 72 73 17 23 80 77 | lmicl | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝑆 ‘ 𝐹 )  ∈  𝑃 ) | 
						
							| 86 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 87 | 1 2 3 72 73 17 23 80 | lmimot | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝑆  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 88 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 89 | 1 2 3 23 24 72 81 83 77 87 88 | motrag | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  〈“ ( 𝑆 ‘ 𝐷 ) ( 𝑆 ‘ 𝐸 ) ( 𝑆 ‘ 𝐹 ) ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 90 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 91 | 1 2 3 72 73 17 23 80 81 83 | lmiiso | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( ( 𝑆 ‘ 𝐷 )  −  ( 𝑆 ‘ 𝐸 ) )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 92 | 90 91 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐴  −  𝐵 )  =  ( ( 𝑆 ‘ 𝐷 )  −  ( 𝑆 ‘ 𝐸 ) ) ) | 
						
							| 93 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 94 | 1 2 3 72 73 17 23 80 83 77 | lmiiso | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( ( 𝑆 ‘ 𝐸 )  −  ( 𝑆 ‘ 𝐹 ) )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 95 | 93 94 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐵  −  𝐶 )  =  ( ( 𝑆 ‘ 𝐸 )  −  ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 96 | 1 3 23 72 78 75 79 | tglinerflx2 | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐵  ∈  ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 97 | 1 2 3 72 73 17 23 80 75 96 | lmicinv | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝑆 ‘ 𝐵 )  =  𝐵 ) | 
						
							| 98 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐵  =  𝐸 ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝑆 ‘ 𝐵 )  =  ( 𝑆 ‘ 𝐸 ) ) | 
						
							| 100 | 97 99 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐵  =  ( 𝑆 ‘ 𝐸 ) ) | 
						
							| 101 |  | eqid | ⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) )  =  ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 102 | 1 2 3 72 73 76 77 | midcom | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 103 | 1 3 23 72 78 75 79 | tglinerflx1 | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ∈  ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 104 | 102 103 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 )  ∈  ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 105 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐶  ≠  𝐹 ) | 
						
							| 106 | 105 | necomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐹  ≠  𝐶 ) | 
						
							| 107 | 1 3 23 72 77 76 106 | tgelrnln | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 )  ∈  ran  ( LineG ‘ 𝐺 ) ) | 
						
							| 108 | 1 2 3 72 73 76 77 | midbtwn | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ∈  ( 𝐶 𝐼 𝐹 ) ) | 
						
							| 109 | 1 2 3 72 76 78 77 108 | tgbtwncom | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ∈  ( 𝐹 𝐼 𝐶 ) ) | 
						
							| 110 | 1 3 23 72 77 76 78 106 109 | btwnlng1 | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ∈  ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 111 | 103 110 | elind | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ∈  ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 )  ∩  ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) ) | 
						
							| 112 | 1 3 23 72 77 76 106 | tglinerflx2 | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐶  ∈  ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 113 | 79 | necomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐵  ≠  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 114 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 115 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 116 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 117 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 118 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 119 | 118 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  𝐶 ) | 
						
							| 120 | 1 2 3 114 117 115 116 119 | midcgr | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  ( 𝐶  −  𝐶 )  =  ( 𝐶  −  𝐹 ) ) | 
						
							| 121 | 120 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  ( 𝐶  −  𝐹 )  =  ( 𝐶  −  𝐶 ) ) | 
						
							| 122 | 1 2 3 114 115 116 115 121 | axtgcgrid | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) )  →  𝐶  =  𝐹 ) | 
						
							| 123 | 122 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  →  ( 𝐶  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  →  𝐶  =  𝐹 ) ) | 
						
							| 124 | 123 | necon3d | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  →  ( 𝐶  ≠  𝐹  →  𝐶  ≠  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ) | 
						
							| 125 | 124 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐶  ≠  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 126 | 98 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐸  =  𝐵 ) | 
						
							| 127 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 128 | 1 2 3 72 73 76 77 24 78 | ismidb | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐹  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 )  ↔  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  =  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ) | 
						
							| 129 | 127 128 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐹  =  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) | 
						
							| 130 | 126 129 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐸  −  𝐹 )  =  ( 𝐵  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) | 
						
							| 131 | 93 130 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐵  −  𝐶 )  =  ( 𝐵  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) | 
						
							| 132 | 1 2 3 23 24 72 75 78 76 | israg | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 〈“ 𝐵 ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐵  −  𝐶 )  =  ( 𝐵  −  ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) ) | 
						
							| 133 | 131 132 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  〈“ 𝐵 ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 134 | 1 2 3 23 72 80 107 111 96 112 113 125 133 | ragperp | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 135 | 134 | orcd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 )  ∨  𝐹  =  𝐶 ) ) | 
						
							| 136 | 1 2 3 72 73 17 23 80 77 76 | islmib | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐶  =  ( 𝑆 ‘ 𝐹 )  ↔  ( ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 )  ∈  ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 )  ∧  ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 )  ∨  𝐹  =  𝐶 ) ) ) ) | 
						
							| 137 | 104 135 136 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  𝐶  =  ( 𝑆 ‘ 𝐹 ) ) | 
						
							| 138 | 1 2 3 72 73 74 75 76 82 84 85 86 89 92 95 100 101 137 | hypcgrlem1 | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐴  −  𝐶 )  =  ( ( 𝑆 ‘ 𝐷 )  −  ( 𝑆 ‘ 𝐹 ) ) ) | 
						
							| 139 | 1 2 3 72 73 17 23 80 81 77 | lmiiso | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( ( 𝑆 ‘ 𝐷 )  −  ( 𝑆 ‘ 𝐹 ) )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 140 | 138 139 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  ∧  𝐶  ≠  𝐹 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 141 | 71 140 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 )  ≠  𝐵 )  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 142 | 55 141 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) |