| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismid.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | ismid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | ismid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | ismid.1 | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | lmif.m | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
						
							| 7 |  | lmif.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 8 |  | lmif.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | lmif | ⊢ ( 𝜑  →  𝑀 : 𝑃 ⟶ 𝑃 ) | 
						
							| 10 | 9 | ffnd | ⊢ ( 𝜑  →  𝑀  Fn  𝑃 ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝑃 )  →  𝐺  ∈  TarskiG ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝑃 )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 13 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝑃 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝑃 )  →  𝑏  ∈  𝑃 ) | 
						
							| 15 | 1 2 3 11 12 6 7 13 14 | lmilmi | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝑃 )  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝑃 ( 𝑀 ‘ ( 𝑀 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 17 |  | nvocnv | ⊢ ( ( 𝑀 : 𝑃 ⟶ 𝑃  ∧  ∀ 𝑏  ∈  𝑃 ( 𝑀 ‘ ( 𝑀 ‘ 𝑏 ) )  =  𝑏 )  →  ◡ 𝑀  =  𝑀 ) | 
						
							| 18 | 9 16 17 | syl2anc | ⊢ ( 𝜑  →  ◡ 𝑀  =  𝑀 ) | 
						
							| 19 |  | nvof1o | ⊢ ( ( 𝑀  Fn  𝑃  ∧  ◡ 𝑀  =  𝑀 )  →  𝑀 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 20 | 10 18 19 | syl2anc | ⊢ ( 𝜑  →  𝑀 : 𝑃 –1-1-onto→ 𝑃 ) |