| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 2 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 3 |  | snex |  |-  { I } e. _V | 
						
							| 4 | 3 | a1i |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> { I } e. _V ) | 
						
							| 5 |  | mpoexga |  |-  ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) | 
						
							| 6 | 2 4 5 | sylancr |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) | 
						
							| 7 | 1 | lmodvsca |  |-  ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) /\ ( x = r /\ y = I ) ) -> y = I ) | 
						
							| 11 |  | simp3 |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> r e. ( Base ` R ) ) | 
						
							| 12 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> I e. { I } ) | 
						
							| 14 | 9 10 11 13 13 | ovmpod |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) = I ) | 
						
							| 15 | 14 13 | eqeltrd |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) e. { I } ) |