| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmod1.m |
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
| 2 |
|
eqid |
|- { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
| 3 |
2
|
grp1 |
|- ( I e. V -> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } e. Grp ) |
| 4 |
|
fvex |
|- ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V |
| 5 |
|
snex |
|- { I } e. _V |
| 6 |
2
|
grpbase |
|- ( { I } e. _V -> { I } = ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) ) |
| 7 |
5 6
|
ax-mp |
|- { I } = ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) |
| 8 |
7
|
opeq2i |
|- <. ( Base ` ndx ) , { I } >. = <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. |
| 9 |
|
tpeq1 |
|- ( <. ( Base ` ndx ) , { I } >. = <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. -> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } ) |
| 10 |
8 9
|
ax-mp |
|- { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } |
| 11 |
10
|
uneq1i |
|- ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) = ( { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
| 12 |
1 11
|
eqtri |
|- M = ( { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
| 13 |
12
|
lmodbase |
|- ( ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V -> ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( Base ` M ) ) |
| 14 |
4 13
|
ax-mp |
|- ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( Base ` M ) |
| 15 |
14
|
eqcomi |
|- ( Base ` M ) = ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) |
| 16 |
|
fvex |
|- ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V |
| 17 |
|
snex |
|- { <. <. I , I >. , I >. } e. _V |
| 18 |
2
|
grpplusg |
|- ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) ) |
| 19 |
17 18
|
ax-mp |
|- { <. <. I , I >. , I >. } = ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) |
| 20 |
19
|
opeq2i |
|- <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. = <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. |
| 21 |
|
tpeq2 |
|- ( <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. = <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. -> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } ) |
| 22 |
20 21
|
ax-mp |
|- { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } |
| 23 |
22
|
uneq1i |
|- ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
| 24 |
1 23
|
eqtri |
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
| 25 |
24
|
lmodplusg |
|- ( ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V -> ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( +g ` M ) ) |
| 26 |
16 25
|
ax-mp |
|- ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( +g ` M ) |
| 27 |
26
|
eqcomi |
|- ( +g ` M ) = ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) |
| 28 |
15 27
|
grpprop |
|- ( M e. Grp <-> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } e. Grp ) |
| 29 |
3 28
|
sylibr |
|- ( I e. V -> M e. Grp ) |
| 30 |
29
|
adantr |
|- ( ( I e. V /\ R e. Ring ) -> M e. Grp ) |
| 31 |
1
|
lmodsca |
|- ( R e. Ring -> R = ( Scalar ` M ) ) |
| 32 |
31
|
eqcomd |
|- ( R e. Ring -> ( Scalar ` M ) = R ) |
| 33 |
32
|
adantl |
|- ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) = R ) |
| 34 |
|
simpr |
|- ( ( I e. V /\ R e. Ring ) -> R e. Ring ) |
| 35 |
33 34
|
eqeltrd |
|- ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) e. Ring ) |
| 36 |
33
|
fveq2d |
|- ( ( I e. V /\ R e. Ring ) -> ( Base ` ( Scalar ` M ) ) = ( Base ` R ) ) |
| 37 |
36
|
eleq2d |
|- ( ( I e. V /\ R e. Ring ) -> ( q e. ( Base ` ( Scalar ` M ) ) <-> q e. ( Base ` R ) ) ) |
| 38 |
36
|
eleq2d |
|- ( ( I e. V /\ R e. Ring ) -> ( r e. ( Base ` ( Scalar ` M ) ) <-> r e. ( Base ` R ) ) ) |
| 39 |
37 38
|
anbi12d |
|- ( ( I e. V /\ R e. Ring ) -> ( ( q e. ( Base ` ( Scalar ` M ) ) /\ r e. ( Base ` ( Scalar ` M ) ) ) <-> ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) ) |
| 40 |
|
simpll |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> I e. V ) |
| 41 |
|
simplr |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> R e. Ring ) |
| 42 |
|
simprr |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> r e. ( Base ` R ) ) |
| 43 |
40 41 42
|
3jca |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) ) |
| 44 |
1
|
lmod1lem1 |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) e. { I } ) |
| 45 |
43 44
|
syl |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( r ( .s ` M ) I ) e. { I } ) |
| 46 |
1
|
lmod1lem2 |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |
| 47 |
43 46
|
syl |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |
| 48 |
1
|
lmod1lem3 |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |
| 49 |
45 47 48
|
3jca |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) |
| 50 |
1
|
lmod1lem4 |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) |
| 51 |
1
|
lmod1lem5 |
|- ( ( I e. V /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) |
| 52 |
51
|
adantr |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) |
| 53 |
49 50 52
|
jca32 |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) |
| 54 |
53
|
ex |
|- ( ( I e. V /\ R e. Ring ) -> ( ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) -> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 55 |
39 54
|
sylbid |
|- ( ( I e. V /\ R e. Ring ) -> ( ( q e. ( Base ` ( Scalar ` M ) ) /\ r e. ( Base ` ( Scalar ` M ) ) ) -> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 56 |
55
|
ralrimivv |
|- ( ( I e. V /\ R e. Ring ) -> A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) |
| 57 |
|
oveq2 |
|- ( x = I -> ( w ( +g ` M ) x ) = ( w ( +g ` M ) I ) ) |
| 58 |
57
|
oveq2d |
|- ( x = I -> ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( r ( .s ` M ) ( w ( +g ` M ) I ) ) ) |
| 59 |
|
oveq2 |
|- ( x = I -> ( r ( .s ` M ) x ) = ( r ( .s ` M ) I ) ) |
| 60 |
59
|
oveq2d |
|- ( x = I -> ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |
| 61 |
58 60
|
eqeq12d |
|- ( x = I -> ( ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) <-> ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) |
| 62 |
61
|
3anbi2d |
|- ( x = I -> ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) <-> ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) ) ) |
| 63 |
62
|
anbi1d |
|- ( x = I -> ( ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) |
| 64 |
63
|
ralbidv |
|- ( x = I -> ( A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) |
| 65 |
64
|
ralsng |
|- ( I e. V -> ( A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) |
| 66 |
65
|
adantr |
|- ( ( I e. V /\ R e. Ring ) -> ( A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) |
| 67 |
|
oveq2 |
|- ( w = I -> ( r ( .s ` M ) w ) = ( r ( .s ` M ) I ) ) |
| 68 |
67
|
eleq1d |
|- ( w = I -> ( ( r ( .s ` M ) w ) e. { I } <-> ( r ( .s ` M ) I ) e. { I } ) ) |
| 69 |
|
oveq1 |
|- ( w = I -> ( w ( +g ` M ) I ) = ( I ( +g ` M ) I ) ) |
| 70 |
69
|
oveq2d |
|- ( w = I -> ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( r ( .s ` M ) ( I ( +g ` M ) I ) ) ) |
| 71 |
67
|
oveq1d |
|- ( w = I -> ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |
| 72 |
70 71
|
eqeq12d |
|- ( w = I -> ( ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) <-> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) |
| 73 |
|
oveq2 |
|- ( w = I -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) ) |
| 74 |
|
oveq2 |
|- ( w = I -> ( q ( .s ` M ) w ) = ( q ( .s ` M ) I ) ) |
| 75 |
74 67
|
oveq12d |
|- ( w = I -> ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |
| 76 |
73 75
|
eqeq12d |
|- ( w = I -> ( ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) <-> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) |
| 77 |
68 72 76
|
3anbi123d |
|- ( w = I -> ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) <-> ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) ) |
| 78 |
|
oveq2 |
|- ( w = I -> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) ) |
| 79 |
67
|
oveq2d |
|- ( w = I -> ( q ( .s ` M ) ( r ( .s ` M ) w ) ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) |
| 80 |
78 79
|
eqeq12d |
|- ( w = I -> ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) <-> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) ) |
| 81 |
|
oveq2 |
|- ( w = I -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) ) |
| 82 |
|
id |
|- ( w = I -> w = I ) |
| 83 |
81 82
|
eqeq12d |
|- ( w = I -> ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w <-> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) |
| 84 |
80 83
|
anbi12d |
|- ( w = I -> ( ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) <-> ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) |
| 85 |
77 84
|
anbi12d |
|- ( w = I -> ( ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 86 |
85
|
ralsng |
|- ( I e. V -> ( A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 87 |
86
|
adantr |
|- ( ( I e. V /\ R e. Ring ) -> ( A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 88 |
66 87
|
bitrd |
|- ( ( I e. V /\ R e. Ring ) -> ( A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 89 |
88
|
2ralbidv |
|- ( ( I e. V /\ R e. Ring ) -> ( A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) |
| 90 |
56 89
|
mpbird |
|- ( ( I e. V /\ R e. Ring ) -> A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) |
| 91 |
1
|
lmodbase |
|- ( { I } e. _V -> { I } = ( Base ` M ) ) |
| 92 |
5 91
|
ax-mp |
|- { I } = ( Base ` M ) |
| 93 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 94 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
| 95 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 96 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
| 97 |
|
eqid |
|- ( +g ` ( Scalar ` M ) ) = ( +g ` ( Scalar ` M ) ) |
| 98 |
|
eqid |
|- ( .r ` ( Scalar ` M ) ) = ( .r ` ( Scalar ` M ) ) |
| 99 |
|
eqid |
|- ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) |
| 100 |
92 93 94 95 96 97 98 99
|
islmod |
|- ( M e. LMod <-> ( M e. Grp /\ ( Scalar ` M ) e. Ring /\ A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) |
| 101 |
30 35 90 100
|
syl3anbrc |
|- ( ( I e. V /\ R e. Ring ) -> M e. LMod ) |