| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 2 |  | eqid |  |-  { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } | 
						
							| 3 | 2 | grp1 |  |-  ( I e. V -> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } e. Grp ) | 
						
							| 4 |  | fvex |  |-  ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V | 
						
							| 5 |  | snex |  |-  { I } e. _V | 
						
							| 6 | 2 | grpbase |  |-  ( { I } e. _V -> { I } = ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  { I } = ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) | 
						
							| 8 | 7 | opeq2i |  |-  <. ( Base ` ndx ) , { I } >. = <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. | 
						
							| 9 |  | tpeq1 |  |-  ( <. ( Base ` ndx ) , { I } >. = <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. -> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } ) | 
						
							| 10 | 8 9 | ax-mp |  |-  { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } | 
						
							| 11 | 10 | uneq1i |  |-  ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) = ( { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 12 | 1 11 | eqtri |  |-  M = ( { <. ( Base ` ndx ) , ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 13 | 12 | lmodbase |  |-  ( ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V -> ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( Base ` M ) ) | 
						
							| 14 | 4 13 | ax-mp |  |-  ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( Base ` M ) | 
						
							| 15 | 14 | eqcomi |  |-  ( Base ` M ) = ( Base ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) | 
						
							| 16 |  | fvex |  |-  ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V | 
						
							| 17 |  | snex |  |-  { <. <. I , I >. , I >. } e. _V | 
						
							| 18 | 2 | grpplusg |  |-  ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  { <. <. I , I >. , I >. } = ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) | 
						
							| 20 | 19 | opeq2i |  |-  <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. = <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. | 
						
							| 21 |  | tpeq2 |  |-  ( <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. = <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. -> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } ) | 
						
							| 22 | 20 21 | ax-mp |  |-  { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } | 
						
							| 23 | 22 | uneq1i |  |-  ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 24 | 1 23 | eqtri |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 25 | 24 | lmodplusg |  |-  ( ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) e. _V -> ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( +g ` M ) ) | 
						
							| 26 | 16 25 | ax-mp |  |-  ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) = ( +g ` M ) | 
						
							| 27 | 26 | eqcomi |  |-  ( +g ` M ) = ( +g ` { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } ) | 
						
							| 28 | 15 27 | grpprop |  |-  ( M e. Grp <-> { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } e. Grp ) | 
						
							| 29 | 3 28 | sylibr |  |-  ( I e. V -> M e. Grp ) | 
						
							| 30 | 29 | adantr |  |-  ( ( I e. V /\ R e. Ring ) -> M e. Grp ) | 
						
							| 31 | 1 | lmodsca |  |-  ( R e. Ring -> R = ( Scalar ` M ) ) | 
						
							| 32 | 31 | eqcomd |  |-  ( R e. Ring -> ( Scalar ` M ) = R ) | 
						
							| 33 | 32 | adantl |  |-  ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) = R ) | 
						
							| 34 |  | simpr |  |-  ( ( I e. V /\ R e. Ring ) -> R e. Ring ) | 
						
							| 35 | 33 34 | eqeltrd |  |-  ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) e. Ring ) | 
						
							| 36 | 33 | fveq2d |  |-  ( ( I e. V /\ R e. Ring ) -> ( Base ` ( Scalar ` M ) ) = ( Base ` R ) ) | 
						
							| 37 | 36 | eleq2d |  |-  ( ( I e. V /\ R e. Ring ) -> ( q e. ( Base ` ( Scalar ` M ) ) <-> q e. ( Base ` R ) ) ) | 
						
							| 38 | 36 | eleq2d |  |-  ( ( I e. V /\ R e. Ring ) -> ( r e. ( Base ` ( Scalar ` M ) ) <-> r e. ( Base ` R ) ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( ( I e. V /\ R e. Ring ) -> ( ( q e. ( Base ` ( Scalar ` M ) ) /\ r e. ( Base ` ( Scalar ` M ) ) ) <-> ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) ) | 
						
							| 40 |  | simpll |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> I e. V ) | 
						
							| 41 |  | simplr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> R e. Ring ) | 
						
							| 42 |  | simprr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> r e. ( Base ` R ) ) | 
						
							| 43 | 40 41 42 | 3jca |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) ) | 
						
							| 44 | 1 | lmod1lem1 |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) e. { I } ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( r ( .s ` M ) I ) e. { I } ) | 
						
							| 46 | 1 | lmod1lem2 |  |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 47 | 43 46 | syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 48 | 1 | lmod1lem3 |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 49 | 45 47 48 | 3jca |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) | 
						
							| 50 | 1 | lmod1lem4 |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 51 | 1 | lmod1lem5 |  |-  ( ( I e. V /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) | 
						
							| 53 | 49 50 52 | jca32 |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) | 
						
							| 54 | 53 | ex |  |-  ( ( I e. V /\ R e. Ring ) -> ( ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) -> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 55 | 39 54 | sylbid |  |-  ( ( I e. V /\ R e. Ring ) -> ( ( q e. ( Base ` ( Scalar ` M ) ) /\ r e. ( Base ` ( Scalar ` M ) ) ) -> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 56 | 55 | ralrimivv |  |-  ( ( I e. V /\ R e. Ring ) -> A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) | 
						
							| 57 |  | oveq2 |  |-  ( x = I -> ( w ( +g ` M ) x ) = ( w ( +g ` M ) I ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( x = I -> ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( r ( .s ` M ) ( w ( +g ` M ) I ) ) ) | 
						
							| 59 |  | oveq2 |  |-  ( x = I -> ( r ( .s ` M ) x ) = ( r ( .s ` M ) I ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( x = I -> ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 61 | 58 60 | eqeq12d |  |-  ( x = I -> ( ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) <-> ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) | 
						
							| 62 | 61 | 3anbi2d |  |-  ( x = I -> ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) <-> ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) ) ) | 
						
							| 63 | 62 | anbi1d |  |-  ( x = I -> ( ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) | 
						
							| 64 | 63 | ralbidv |  |-  ( x = I -> ( A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) | 
						
							| 65 | 64 | ralsng |  |-  ( I e. V -> ( A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( I e. V /\ R e. Ring ) -> ( A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) | 
						
							| 67 |  | oveq2 |  |-  ( w = I -> ( r ( .s ` M ) w ) = ( r ( .s ` M ) I ) ) | 
						
							| 68 | 67 | eleq1d |  |-  ( w = I -> ( ( r ( .s ` M ) w ) e. { I } <-> ( r ( .s ` M ) I ) e. { I } ) ) | 
						
							| 69 |  | oveq1 |  |-  ( w = I -> ( w ( +g ` M ) I ) = ( I ( +g ` M ) I ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( w = I -> ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( r ( .s ` M ) ( I ( +g ` M ) I ) ) ) | 
						
							| 71 | 67 | oveq1d |  |-  ( w = I -> ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 72 | 70 71 | eqeq12d |  |-  ( w = I -> ( ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) <-> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) | 
						
							| 73 |  | oveq2 |  |-  ( w = I -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) ) | 
						
							| 74 |  | oveq2 |  |-  ( w = I -> ( q ( .s ` M ) w ) = ( q ( .s ` M ) I ) ) | 
						
							| 75 | 74 67 | oveq12d |  |-  ( w = I -> ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 76 | 73 75 | eqeq12d |  |-  ( w = I -> ( ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) <-> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) | 
						
							| 77 | 68 72 76 | 3anbi123d |  |-  ( w = I -> ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) <-> ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) ) ) | 
						
							| 78 |  | oveq2 |  |-  ( w = I -> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) ) | 
						
							| 79 | 67 | oveq2d |  |-  ( w = I -> ( q ( .s ` M ) ( r ( .s ` M ) w ) ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) | 
						
							| 80 | 78 79 | eqeq12d |  |-  ( w = I -> ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) <-> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) ) | 
						
							| 81 |  | oveq2 |  |-  ( w = I -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) ) | 
						
							| 82 |  | id |  |-  ( w = I -> w = I ) | 
						
							| 83 | 81 82 | eqeq12d |  |-  ( w = I -> ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w <-> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) | 
						
							| 84 | 80 83 | anbi12d |  |-  ( w = I -> ( ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) <-> ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) | 
						
							| 85 | 77 84 | anbi12d |  |-  ( w = I -> ( ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 86 | 85 | ralsng |  |-  ( I e. V -> ( A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 87 | 86 | adantr |  |-  ( ( I e. V /\ R e. Ring ) -> ( A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) I ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 88 | 66 87 | bitrd |  |-  ( ( I e. V /\ R e. Ring ) -> ( A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 89 | 88 | 2ralbidv |  |-  ( ( I e. V /\ R e. Ring ) -> ( A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) <-> A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) ( ( ( r ( .s ` M ) I ) e. { I } /\ ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) ) ) ) | 
						
							| 90 | 56 89 | mpbird |  |-  ( ( I e. V /\ R e. Ring ) -> A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) | 
						
							| 91 | 1 | lmodbase |  |-  ( { I } e. _V -> { I } = ( Base ` M ) ) | 
						
							| 92 | 5 91 | ax-mp |  |-  { I } = ( Base ` M ) | 
						
							| 93 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 94 |  | eqid |  |-  ( .s ` M ) = ( .s ` M ) | 
						
							| 95 |  | eqid |  |-  ( Scalar ` M ) = ( Scalar ` M ) | 
						
							| 96 |  | eqid |  |-  ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) | 
						
							| 97 |  | eqid |  |-  ( +g ` ( Scalar ` M ) ) = ( +g ` ( Scalar ` M ) ) | 
						
							| 98 |  | eqid |  |-  ( .r ` ( Scalar ` M ) ) = ( .r ` ( Scalar ` M ) ) | 
						
							| 99 |  | eqid |  |-  ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) | 
						
							| 100 | 92 93 94 95 96 97 98 99 | islmod |  |-  ( M e. LMod <-> ( M e. Grp /\ ( Scalar ` M ) e. Ring /\ A. q e. ( Base ` ( Scalar ` M ) ) A. r e. ( Base ` ( Scalar ` M ) ) A. x e. { I } A. w e. { I } ( ( ( r ( .s ` M ) w ) e. { I } /\ ( r ( .s ` M ) ( w ( +g ` M ) x ) ) = ( ( r ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) x ) ) /\ ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( ( q ( .s ` M ) w ) ( +g ` M ) ( r ( .s ` M ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) w ) = ( q ( .s ` M ) ( r ( .s ` M ) w ) ) /\ ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) w ) = w ) ) ) ) | 
						
							| 101 | 30 35 90 100 | syl3anbrc |  |-  ( ( I e. V /\ R e. Ring ) -> M e. LMod ) |