| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 2 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 3 |  | snex |  |-  { I } e. _V | 
						
							| 4 | 2 3 | pm3.2i |  |-  ( ( Base ` R ) e. _V /\ { I } e. _V ) | 
						
							| 5 | 4 | a1i |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( Base ` R ) e. _V /\ { I } e. _V ) ) | 
						
							| 6 |  | mpoexga |  |-  ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) | 
						
							| 7 | 1 | lmodvsca |  |-  ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) /\ ( x = q /\ y = I ) ) -> y = I ) | 
						
							| 11 |  | simprl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> q e. ( Base ` R ) ) | 
						
							| 12 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> I e. { I } ) | 
						
							| 14 | 9 10 11 13 13 | ovmpod |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( .s ` M ) I ) = I ) | 
						
							| 15 |  | simprr |  |-  ( ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) /\ ( x = r /\ y = I ) ) -> y = I ) | 
						
							| 16 |  | simprr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> r e. ( Base ` R ) ) | 
						
							| 17 | 9 15 16 13 13 | ovmpod |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( r ( .s ` M ) I ) = I ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( .s ` M ) ( r ( .s ` M ) I ) ) = ( q ( .s ` M ) I ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) /\ ( x = ( q ( .r ` ( Scalar ` M ) ) r ) /\ y = I ) ) -> y = I ) | 
						
							| 20 |  | simplr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> R e. Ring ) | 
						
							| 21 | 1 | lmodsca |  |-  ( R e. Ring -> R = ( Scalar ` M ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( R e. Ring -> ( .r ` R ) = ( .r ` ( Scalar ` M ) ) ) | 
						
							| 23 | 20 22 | syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( .r ` R ) = ( .r ` ( Scalar ` M ) ) ) | 
						
							| 24 | 23 | eqcomd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( .r ` ( Scalar ` M ) ) = ( .r ` R ) ) | 
						
							| 25 | 24 | oveqd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( .r ` ( Scalar ` M ) ) r ) = ( q ( .r ` R ) r ) ) | 
						
							| 26 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 27 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 28 | 26 27 | ringcl |  |-  ( ( R e. Ring /\ q e. ( Base ` R ) /\ r e. ( Base ` R ) ) -> ( q ( .r ` R ) r ) e. ( Base ` R ) ) | 
						
							| 29 | 20 11 16 28 | syl3anc |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( .r ` R ) r ) e. ( Base ` R ) ) | 
						
							| 30 | 25 29 | eqeltrd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( .r ` ( Scalar ` M ) ) r ) e. ( Base ` R ) ) | 
						
							| 31 | 9 19 30 13 13 | ovmpod |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = I ) | 
						
							| 32 | 14 18 31 | 3eqtr4rd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( .r ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( q ( .s ` M ) ( r ( .s ` M ) I ) ) ) |