Metamath Proof Explorer


Theorem lmod1lem4

Description: Lemma 4 for lmod1 . (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
Assertion lmod1lem4 ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
2 fvex ( Base ‘ 𝑅 ) ∈ V
3 snex { 𝐼 } ∈ V
4 2 3 pm3.2i ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V )
5 4 a1i ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) )
6 mpoexga ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V )
7 1 lmodvsca ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
8 5 6 7 3syl ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
9 8 eqcomd ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ·𝑠𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) )
10 simprr ( ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = 𝑞𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 )
11 simprl ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑞 ∈ ( Base ‘ 𝑅 ) )
12 snidg ( 𝐼𝑉𝐼 ∈ { 𝐼 } )
13 12 ad2antrr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼 ∈ { 𝐼 } )
14 9 10 11 13 13 ovmpod ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
15 simprr ( ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = 𝑟𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 )
16 simprr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) )
17 9 15 16 13 13 ovmpod ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
18 17 oveq2d ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) = ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) )
19 simprr ( ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 )
20 simplr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring )
21 1 lmodsca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) )
22 21 fveq2d ( 𝑅 ∈ Ring → ( .r𝑅 ) = ( .r ‘ ( Scalar ‘ 𝑀 ) ) )
23 20 22 syl ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( .r𝑅 ) = ( .r ‘ ( Scalar ‘ 𝑀 ) ) )
24 23 eqcomd ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( .r ‘ ( Scalar ‘ 𝑀 ) ) = ( .r𝑅 ) )
25 24 oveqd ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) = ( 𝑞 ( .r𝑅 ) 𝑟 ) )
26 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
27 eqid ( .r𝑅 ) = ( .r𝑅 )
28 26 27 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑞 ( .r𝑅 ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) )
29 20 11 16 28 syl3anc ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( .r𝑅 ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) )
30 25 29 eqeltrd ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) )
31 9 19 30 13 13 ovmpod ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
32 14 18 31 3eqtr4rd ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )