Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
2 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
3 |
|
snex |
⊢ { 𝐼 } ∈ V |
4 |
2 3
|
pm3.2i |
⊢ ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) |
5 |
4
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) ) |
6 |
|
mpoexga |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
7 |
1
|
lmodvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ·𝑠 ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
10 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
11 |
1
|
lmodsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝑀 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑀 ) = 𝑅 ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
17 |
15 16
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
14 18
|
eqeltrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) ) |
20 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) |
21 |
20
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ { 𝐼 } ) |
22 |
9 10 19 21 21
|
ovmpod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |