Metamath Proof Explorer


Theorem lmod1lem5

Description: Lemma 5 for lmod1 . (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
Assertion lmod1lem5 ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )

Proof

Step Hyp Ref Expression
1 lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
2 fvex ( Base ‘ 𝑅 ) ∈ V
3 snex { 𝐼 } ∈ V
4 2 3 pm3.2i ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V )
5 4 a1i ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) )
6 mpoexga ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V )
7 1 lmodvsca ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
8 5 6 7 3syl ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
9 8 eqcomd ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ·𝑠𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) )
10 simprr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 )
11 1 lmodsca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) )
12 11 adantl ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝑀 ) )
13 12 eqcomd ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( Scalar ‘ 𝑀 ) = 𝑅 )
14 13 fveq2d ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r𝑅 ) )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 eqid ( 1r𝑅 ) = ( 1r𝑅 )
17 15 16 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
18 17 adantl ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
19 14 18 eqeltrd ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) )
20 snidg ( 𝐼𝑉𝐼 ∈ { 𝐼 } )
21 20 adantr ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝐼 ∈ { 𝐼 } )
22 9 10 19 21 21 ovmpod ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )