| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m | ⊢ 𝑀  =  ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 2 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 3 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 4 | 2 3 | pm3.2i | ⊢ ( ( Base ‘ 𝑅 )  ∈  V  ∧  { 𝐼 }  ∈  V ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ( Base ‘ 𝑅 )  ∈  V  ∧  { 𝐼 }  ∈  V ) ) | 
						
							| 6 |  | mpoexga | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  V  ∧  { 𝐼 }  ∈  V )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  ∈  V ) | 
						
							| 7 | 1 | lmodvsca | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  ∈  V  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  =  (  ·𝑠  ‘ 𝑀 ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  =  (  ·𝑠  ‘ 𝑀 ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  (  ·𝑠  ‘ 𝑀 )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑦  =  𝐼 ) )  →  𝑦  =  𝐼 ) | 
						
							| 11 | 1 | lmodsca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑀 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝑀 ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑀 )  =  𝑅 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 17 | 15 16 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 19 | 14 18 | eqeltrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 20 |  | snidg | ⊢ ( 𝐼  ∈  𝑉  →  𝐼  ∈  { 𝐼 } ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  𝐼  ∈  { 𝐼 } ) | 
						
							| 22 | 9 10 19 21 21 | ovmpod | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) |