Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
2 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } = { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } |
3 |
2
|
grp1 |
⊢ ( 𝐼 ∈ 𝑉 → { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ∈ Grp ) |
4 |
|
fvex |
⊢ ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) ∈ V |
5 |
|
snex |
⊢ { 𝐼 } ∈ V |
6 |
2
|
grpbase |
⊢ ( { 𝐼 } ∈ V → { 𝐼 } = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) ) |
7 |
5 6
|
ax-mp |
⊢ { 𝐼 } = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) |
8 |
7
|
opeq2i |
⊢ 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 = 〈 ( Base ‘ ndx ) , ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 |
9 |
|
tpeq1 |
⊢ ( 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 = 〈 ( Base ‘ ndx ) , ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 → { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } = { 〈 ( Base ‘ ndx ) , ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ) |
10 |
8 9
|
ax-mp |
⊢ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } = { 〈 ( Base ‘ ndx ) , ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } |
11 |
10
|
uneq1i |
⊢ ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
12 |
1 11
|
eqtri |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
13 |
12
|
lmodbase |
⊢ ( ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) ∈ V → ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) = ( Base ‘ 𝑀 ) ) |
14 |
4 13
|
ax-mp |
⊢ ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) = ( Base ‘ 𝑀 ) |
15 |
14
|
eqcomi |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) |
16 |
|
fvex |
⊢ ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) ∈ V |
17 |
|
snex |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V |
18 |
2
|
grpplusg |
⊢ ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) ) |
19 |
17 18
|
ax-mp |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) |
20 |
19
|
opeq2i |
⊢ 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 = 〈 ( +g ‘ ndx ) , ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 |
21 |
|
tpeq2 |
⊢ ( 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 = 〈 ( +g ‘ ndx ) , ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 → { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } = { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ) |
22 |
20 21
|
ax-mp |
⊢ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } = { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } |
23 |
22
|
uneq1i |
⊢ ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
24 |
1 23
|
eqtri |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
25 |
24
|
lmodplusg |
⊢ ( ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) ∈ V → ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) = ( +g ‘ 𝑀 ) ) |
26 |
16 25
|
ax-mp |
⊢ ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) = ( +g ‘ 𝑀 ) |
27 |
26
|
eqcomi |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ) |
28 |
15 27
|
grpprop |
⊢ ( 𝑀 ∈ Grp ↔ { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } ∈ Grp ) |
29 |
3 28
|
sylibr |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Grp ) |
30 |
29
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ Grp ) |
31 |
1
|
lmodsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) ) |
32 |
31
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑀 ) = 𝑅 ) |
33 |
32
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑀 ) = 𝑅 ) |
34 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
35 |
33 34
|
eqeltrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
36 |
33
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ 𝑅 ) ) |
37 |
36
|
eleq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↔ 𝑞 ∈ ( Base ‘ 𝑅 ) ) ) |
38 |
36
|
eleq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↔ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) |
39 |
37 38
|
anbi12d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ) |
40 |
|
simpll |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼 ∈ 𝑉 ) |
41 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
42 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) ) |
43 |
40 41 42
|
3jca |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) |
44 |
1
|
lmod1lem1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ) |
46 |
1
|
lmod1lem2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
47 |
43 46
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
48 |
1
|
lmod1lem3 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
49 |
45 47 48
|
3jca |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ) |
50 |
1
|
lmod1lem4 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
51 |
1
|
lmod1lem5 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
53 |
49 50 52
|
jca32 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) |
54 |
53
|
ex |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
55 |
39 54
|
sylbid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
56 |
55
|
ralrimivv |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) |
57 |
|
oveq2 |
⊢ ( 𝑥 = 𝐼 → ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑥 = 𝐼 → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑥 = 𝐼 → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
60 |
59
|
oveq2d |
⊢ ( 𝑥 = 𝐼 → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
61 |
58 60
|
eqeq12d |
⊢ ( 𝑥 = 𝐼 → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ↔ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ) |
62 |
61
|
3anbi2d |
⊢ ( 𝑥 = 𝐼 → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ) ) |
63 |
62
|
anbi1d |
⊢ ( 𝑥 = 𝐼 → ( ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ) ) |
64 |
63
|
ralbidv |
⊢ ( 𝑥 = 𝐼 → ( ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ) ) |
65 |
64
|
ralsng |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ) ) |
67 |
|
oveq2 |
⊢ ( 𝑤 = 𝐼 → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
68 |
67
|
eleq1d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ↔ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ) ) |
69 |
|
oveq1 |
⊢ ( 𝑤 = 𝐼 → ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝑤 = 𝐼 → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) ) |
71 |
67
|
oveq1d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
72 |
70 71
|
eqeq12d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ↔ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ) |
73 |
|
oveq2 |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
74 |
|
oveq2 |
⊢ ( 𝑤 = 𝐼 → ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
75 |
74 67
|
oveq12d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
76 |
73 75
|
eqeq12d |
⊢ ( 𝑤 = 𝐼 → ( ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ↔ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ) |
77 |
68 72 76
|
3anbi123d |
⊢ ( 𝑤 = 𝐼 → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |
78 |
|
oveq2 |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
79 |
67
|
oveq2d |
⊢ ( 𝑤 = 𝐼 → ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |
80 |
78 79
|
eqeq12d |
⊢ ( 𝑤 = 𝐼 → ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ↔ ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ) |
81 |
|
oveq2 |
⊢ ( 𝑤 = 𝐼 → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
82 |
|
id |
⊢ ( 𝑤 = 𝐼 → 𝑤 = 𝐼 ) |
83 |
81 82
|
eqeq12d |
⊢ ( 𝑤 = 𝐼 → ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ↔ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) |
84 |
80 83
|
anbi12d |
⊢ ( 𝑤 = 𝐼 → ( ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) |
85 |
77 84
|
anbi12d |
⊢ ( 𝑤 = 𝐼 → ( ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
86 |
85
|
ralsng |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
88 |
66 87
|
bitrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
89 |
88
|
2ralbidv |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) ) ) ) |
90 |
56 89
|
mpbird |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ) |
91 |
1
|
lmodbase |
⊢ ( { 𝐼 } ∈ V → { 𝐼 } = ( Base ‘ 𝑀 ) ) |
92 |
5 91
|
ax-mp |
⊢ { 𝐼 } = ( Base ‘ 𝑀 ) |
93 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
94 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
95 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
96 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
97 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑀 ) ) = ( +g ‘ ( Scalar ‘ 𝑀 ) ) |
98 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑀 ) ) = ( .r ‘ ( Scalar ‘ 𝑀 ) ) |
99 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) |
100 |
92 93 94 95 96 97 98 99
|
islmod |
⊢ ( 𝑀 ∈ LMod ↔ ( 𝑀 ∈ Grp ∧ ( Scalar ‘ 𝑀 ) ∈ Ring ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑤 ) = 𝑤 ) ) ) ) |
101 |
30 35 90 100
|
syl3anbrc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ LMod ) |