Metamath Proof Explorer


Theorem lmod1

Description: The (smallest) structure representing azero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
Assertion lmod1 ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑀 ∈ LMod )

Proof

Step Hyp Ref Expression
1 lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
2 eqid { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } = { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ }
3 2 grp1 ( 𝐼𝑉 → { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ∈ Grp )
4 fvex ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ∈ V
5 snex { 𝐼 } ∈ V
6 2 grpbase ( { 𝐼 } ∈ V → { 𝐼 } = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) )
7 5 6 ax-mp { 𝐼 } = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } )
8 7 opeq2i ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ = ⟨ ( Base ‘ ndx ) , ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩
9 tpeq1 ( ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ = ⟨ ( Base ‘ ndx ) , ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ → { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } = { ⟨ ( Base ‘ ndx ) , ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } )
10 8 9 ax-mp { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } = { ⟨ ( Base ‘ ndx ) , ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ }
11 10 uneq1i ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
12 1 11 eqtri 𝑀 = ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
13 12 lmodbase ( ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ∈ V → ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) = ( Base ‘ 𝑀 ) )
14 4 13 ax-mp ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) = ( Base ‘ 𝑀 )
15 14 eqcomi ( Base ‘ 𝑀 ) = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } )
16 fvex ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ∈ V
17 snex { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ∈ V
18 2 grpplusg ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ∈ V → { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } = ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) )
19 17 18 ax-mp { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } = ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } )
20 19 opeq2i ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ = ⟨ ( +g ‘ ndx ) , ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩
21 tpeq2 ( ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ = ⟨ ( +g ‘ ndx ) , ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ → { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } = { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } )
22 20 21 ax-mp { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } = { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ }
23 22 uneq1i ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
24 1 23 eqtri 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
25 24 lmodplusg ( ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) ∈ V → ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) = ( +g𝑀 ) )
26 16 25 ax-mp ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ) = ( +g𝑀 )
27 26 eqcomi ( +g𝑀 ) = ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } )
28 15 27 grpprop ( 𝑀 ∈ Grp ↔ { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } ∈ Grp )
29 3 28 sylibr ( 𝐼𝑉𝑀 ∈ Grp )
30 29 adantr ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑀 ∈ Grp )
31 1 lmodsca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) )
32 31 eqcomd ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑀 ) = 𝑅 )
33 32 adantl ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( Scalar ‘ 𝑀 ) = 𝑅 )
34 simpr ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑅 ∈ Ring )
35 33 34 eqeltrd ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( Scalar ‘ 𝑀 ) ∈ Ring )
36 33 fveq2d ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ 𝑅 ) )
37 36 eleq2d ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↔ 𝑞 ∈ ( Base ‘ 𝑅 ) ) )
38 36 eleq2d ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↔ 𝑟 ∈ ( Base ‘ 𝑅 ) ) )
39 37 38 anbi12d ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) )
40 simpll ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼𝑉 )
41 simplr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring )
42 simprr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) )
43 40 41 42 3jca ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) )
44 1 lmod1lem1 ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } )
45 43 44 syl ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } )
46 1 lmod1lem2 ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
47 43 46 syl ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
48 1 lmod1lem3 ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
49 45 47 48 3jca ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) )
50 1 lmod1lem4 ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
51 1 lmod1lem5 ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
52 51 adantr ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
53 49 50 52 jca32 ( ( ( 𝐼𝑉𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) )
54 53 ex ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
55 39 54 sylbid ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) → ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
56 55 ralrimivv ( ( 𝐼𝑉𝑅 ∈ Ring ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) )
57 oveq2 ( 𝑥 = 𝐼 → ( 𝑤 ( +g𝑀 ) 𝑥 ) = ( 𝑤 ( +g𝑀 ) 𝐼 ) )
58 57 oveq2d ( 𝑥 = 𝐼 → ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) )
59 oveq2 ( 𝑥 = 𝐼 → ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) = ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) )
60 59 oveq2d ( 𝑥 = 𝐼 → ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
61 58 60 eqeq12d ( 𝑥 = 𝐼 → ( ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ↔ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) )
62 61 3anbi2d ( 𝑥 = 𝐼 → ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ↔ ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ) )
63 62 anbi1d ( 𝑥 = 𝐼 → ( ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ) )
64 63 ralbidv ( 𝑥 = 𝐼 → ( ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ) )
65 64 ralsng ( 𝐼𝑉 → ( ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ) )
66 65 adantr ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ) )
67 oveq2 ( 𝑤 = 𝐼 → ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) )
68 67 eleq1d ( 𝑤 = 𝐼 → ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ↔ ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ) )
69 oveq1 ( 𝑤 = 𝐼 → ( 𝑤 ( +g𝑀 ) 𝐼 ) = ( 𝐼 ( +g𝑀 ) 𝐼 ) )
70 69 oveq2d ( 𝑤 = 𝐼 → ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) )
71 67 oveq1d ( 𝑤 = 𝐼 → ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
72 70 71 eqeq12d ( 𝑤 = 𝐼 → ( ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ↔ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) )
73 oveq2 ( 𝑤 = 𝐼 → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) )
74 oveq2 ( 𝑤 = 𝐼 → ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) )
75 74 67 oveq12d ( 𝑤 = 𝐼 → ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
76 73 75 eqeq12d ( 𝑤 = 𝐼 → ( ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ↔ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) )
77 68 72 76 3anbi123d ( 𝑤 = 𝐼 → ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ↔ ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ) )
78 oveq2 ( 𝑤 = 𝐼 → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) )
79 67 oveq2d ( 𝑤 = 𝐼 → ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )
80 78 79 eqeq12d ( 𝑤 = 𝐼 → ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ↔ ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) )
81 oveq2 ( 𝑤 = 𝐼 → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) )
82 id ( 𝑤 = 𝐼𝑤 = 𝐼 )
83 81 82 eqeq12d ( 𝑤 = 𝐼 → ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ↔ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) )
84 80 83 anbi12d ( 𝑤 = 𝐼 → ( ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) )
85 77 84 anbi12d ( 𝑤 = 𝐼 → ( ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
86 85 ralsng ( 𝐼𝑉 → ( ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
87 86 adantr ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
88 66 87 bitrd ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
89 88 2ralbidv ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝐼 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 ) ) ) )
90 56 89 mpbird ( ( 𝐼𝑉𝑅 ∈ Ring ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) )
91 1 lmodbase ( { 𝐼 } ∈ V → { 𝐼 } = ( Base ‘ 𝑀 ) )
92 5 91 ax-mp { 𝐼 } = ( Base ‘ 𝑀 )
93 eqid ( +g𝑀 ) = ( +g𝑀 )
94 eqid ( ·𝑠𝑀 ) = ( ·𝑠𝑀 )
95 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
96 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
97 eqid ( +g ‘ ( Scalar ‘ 𝑀 ) ) = ( +g ‘ ( Scalar ‘ 𝑀 ) )
98 eqid ( .r ‘ ( Scalar ‘ 𝑀 ) ) = ( .r ‘ ( Scalar ‘ 𝑀 ) )
99 eqid ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) )
100 92 93 94 95 96 97 98 99 islmod ( 𝑀 ∈ LMod ↔ ( 𝑀 ∈ Grp ∧ ( Scalar ‘ 𝑀 ) ∈ Ring ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥 ∈ { 𝐼 } ∀ 𝑤 ∈ { 𝐼 } ( ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ∈ { 𝐼 } ∧ ( 𝑟 ( ·𝑠𝑀 ) ( 𝑤 ( +g𝑀 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑀 ) 𝑤 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠𝑀 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠𝑀 ) 𝑤 ) = 𝑤 ) ) ) )
101 30 35 90 100 syl3anbrc ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑀 ∈ LMod )