| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m | ⊢ 𝑀  =  ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 2 |  | eqid | ⊢ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 }  =  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } | 
						
							| 3 | 2 | grp1 | ⊢ ( 𝐼  ∈  𝑉  →  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 }  ∈  Grp ) | 
						
							| 4 |  | fvex | ⊢ ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  ∈  V | 
						
							| 5 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 6 | 2 | grpbase | ⊢ ( { 𝐼 }  ∈  V  →  { 𝐼 }  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ { 𝐼 }  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) | 
						
							| 8 | 7 | opeq2i | ⊢ 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉  =  〈 ( Base ‘ ndx ) ,  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 | 
						
							| 9 |  | tpeq1 | ⊢ ( 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉  =  〈 ( Base ‘ ndx ) ,  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉  →  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 } ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 } | 
						
							| 11 | 10 | uneq1i | ⊢ ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 12 | 1 11 | eqtri | ⊢ 𝑀  =  ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 13 | 12 | lmodbase | ⊢ ( ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  ∈  V  →  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  =  ( Base ‘ 𝑀 ) ) | 
						
							| 14 | 4 13 | ax-mp | ⊢ ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  =  ( Base ‘ 𝑀 ) | 
						
							| 15 | 14 | eqcomi | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) | 
						
							| 16 |  | fvex | ⊢ ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  ∈  V | 
						
							| 17 |  | snex | ⊢ { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  ∈  V | 
						
							| 18 | 2 | grpplusg | ⊢ ( { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  ∈  V  →  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  =  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  =  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) | 
						
							| 20 | 19 | opeq2i | ⊢ 〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉  =  〈 ( +g ‘ ndx ) ,  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 | 
						
							| 21 |  | tpeq2 | ⊢ ( 〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉  =  〈 ( +g ‘ ndx ) ,  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉  →  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  =  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 } ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  =  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 } | 
						
							| 23 | 22 | uneq1i | ⊢ ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 24 | 1 23 | eqtri | ⊢ 𝑀  =  ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 25 | 24 | lmodplusg | ⊢ ( ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  ∈  V  →  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  =  ( +g ‘ 𝑀 ) ) | 
						
							| 26 | 16 25 | ax-mp | ⊢ ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } )  =  ( +g ‘ 𝑀 ) | 
						
							| 27 | 26 | eqcomi | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 } ) | 
						
							| 28 | 15 27 | grpprop | ⊢ ( 𝑀  ∈  Grp  ↔  { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 }  ∈  Grp ) | 
						
							| 29 | 3 28 | sylibr | ⊢ ( 𝐼  ∈  𝑉  →  𝑀  ∈  Grp ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  𝑀  ∈  Grp ) | 
						
							| 31 | 1 | lmodsca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑀 ) ) | 
						
							| 32 | 31 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( Scalar ‘ 𝑀 )  =  𝑅 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑀 )  =  𝑅 ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 35 | 33 34 | eqeltrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑀 )  ∈  Ring ) | 
						
							| 36 | 33 | fveq2d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( Base ‘ ( Scalar ‘ 𝑀 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 36 | eleq2d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↔  𝑞  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 38 | 36 | eleq2d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↔  𝑟  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 39 | 37 38 | anbi12d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  ↔  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 40 |  | simpll | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 41 |  | simplr | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 42 |  | simprr | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑟  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 40 41 42 | 3jca | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 44 | 1 | lmod1lem1 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 } ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 } ) | 
						
							| 46 | 1 | lmod1lem2 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 47 | 43 46 | syl | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 48 | 1 | lmod1lem3 | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 49 | 45 47 48 | 3jca | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) ) | 
						
							| 50 | 1 | lmod1lem4 | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 51 | 1 | lmod1lem5 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) | 
						
							| 53 | 49 50 52 | jca32 | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  ∧  ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ( 𝑞  ∈  ( Base ‘ 𝑅 )  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 55 | 39 54 | sylbid | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 56 | 55 | ralrimivv | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝑥  =  𝐼  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 59 |  | oveq2 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑥  =  𝐼  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 61 | 58 60 | eqeq12d | ⊢ ( 𝑥  =  𝐼  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ↔  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) ) | 
						
							| 62 | 61 | 3anbi2d | ⊢ ( 𝑥  =  𝐼  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ↔  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) ) ) ) | 
						
							| 63 | 62 | anbi1d | ⊢ ( 𝑥  =  𝐼  →  ( ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 64 | 63 | ralbidv | ⊢ ( 𝑥  =  𝐼  →  ( ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 65 | 64 | ralsng | ⊢ ( 𝐼  ∈  𝑉  →  ( ∀ 𝑥  ∈  { 𝐼 } ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ∀ 𝑥  ∈  { 𝐼 } ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 67 |  | oveq2 | ⊢ ( 𝑤  =  𝐼  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 68 | 67 | eleq1d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ↔  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 } ) ) | 
						
							| 69 |  | oveq1 | ⊢ ( 𝑤  =  𝐼  →  ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 )  =  ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( 𝑤  =  𝐼  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 71 | 67 | oveq1d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 72 | 70 71 | eqeq12d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ↔  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) ) | 
						
							| 73 |  | oveq2 | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 74 |  | oveq2 | ⊢ ( 𝑤  =  𝐼  →  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 75 | 74 67 | oveq12d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 76 | 73 75 | eqeq12d | ⊢ ( 𝑤  =  𝐼  →  ( ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ↔  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) ) | 
						
							| 77 | 68 72 76 | 3anbi123d | ⊢ ( 𝑤  =  𝐼  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ↔  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) ) ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 79 | 67 | oveq2d | ⊢ ( 𝑤  =  𝐼  →  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) | 
						
							| 80 | 78 79 | eqeq12d | ⊢ ( 𝑤  =  𝐼  →  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ↔  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) ) | 
						
							| 81 |  | oveq2 | ⊢ ( 𝑤  =  𝐼  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 82 |  | id | ⊢ ( 𝑤  =  𝐼  →  𝑤  =  𝐼 ) | 
						
							| 83 | 81 82 | eqeq12d | ⊢ ( 𝑤  =  𝐼  →  ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤  ↔  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) | 
						
							| 84 | 80 83 | anbi12d | ⊢ ( 𝑤  =  𝐼  →  ( ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 )  ↔  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) | 
						
							| 85 | 77 84 | anbi12d | ⊢ ( 𝑤  =  𝐼  →  ( ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 86 | 85 | ralsng | ⊢ ( 𝐼  ∈  𝑉  →  ( ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 88 | 66 87 | bitrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ∀ 𝑥  ∈  { 𝐼 } ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 89 | 88 | 2ralbidv | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ( ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥  ∈  { 𝐼 } ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) ) ) ) | 
						
							| 90 | 56 89 | mpbird | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥  ∈  { 𝐼 } ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) ) ) | 
						
							| 91 | 1 | lmodbase | ⊢ ( { 𝐼 }  ∈  V  →  { 𝐼 }  =  ( Base ‘ 𝑀 ) ) | 
						
							| 92 | 5 91 | ax-mp | ⊢ { 𝐼 }  =  ( Base ‘ 𝑀 ) | 
						
							| 93 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 94 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑀 )  =  (  ·𝑠  ‘ 𝑀 ) | 
						
							| 95 |  | eqid | ⊢ ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝑀 ) | 
						
							| 96 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) )  =  ( Base ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 97 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑀 ) )  =  ( +g ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 98 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑀 ) )  =  ( .r ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 99 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 100 | 92 93 94 95 96 97 98 99 | islmod | ⊢ ( 𝑀  ∈  LMod  ↔  ( 𝑀  ∈  Grp  ∧  ( Scalar ‘ 𝑀 )  ∈  Ring  ∧  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∀ 𝑥  ∈  { 𝐼 } ∀ 𝑤  ∈  { 𝐼 } ( ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 )  ∈  { 𝐼 }  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝑤 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 101 | 30 35 90 100 | syl3anbrc | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  𝑀  ∈  LMod ) |