Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
2 |
|
eqidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
3 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
4 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
5 |
1
|
lmodsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑀 ) ) ) |
7 |
4 6
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑀 ) ) ) |
8 |
7
|
eqcomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ ( Scalar ‘ 𝑀 ) ) = ( +g ‘ 𝑅 ) ) |
9 |
8
|
oveqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) ) |
10 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
11 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
14 |
12 13
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
15 |
4 10 11 14
|
syl3anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
16 |
9 15
|
eqeltrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) |
18 |
17
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ { 𝐼 } ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼 ∈ { 𝐼 } ) |
20 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ 𝑉 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼 ∈ 𝑉 ) |
22 |
2 3 16 19 21
|
ovmpod |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 𝐼 ) = 𝐼 ) |
23 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
24 |
|
snex |
⊢ { 𝐼 } ∈ V |
25 |
23 24
|
pm3.2i |
⊢ ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) |
26 |
|
mpoexga |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
27 |
25 26
|
mp1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
28 |
1
|
lmodvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
30 |
29
|
eqcomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ·𝑠 ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
31 |
30
|
oveqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 𝐼 ) ) |
32 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = 𝑞 ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
33 |
30 32 10 19 19
|
ovmpod |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
34 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = 𝑟 ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
35 |
30 34 11 19 19
|
ovmpod |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
36 |
33 35
|
oveq12d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) |
37 |
|
snex |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V |
38 |
1
|
lmodplusg |
⊢ ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
39 |
37 38
|
mp1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
40 |
39
|
eqcomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ 𝑀 ) = { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ) |
41 |
40
|
oveqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) ) |
42 |
|
df-ov |
⊢ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) |
43 |
|
opex |
⊢ 〈 𝐼 , 𝐼 〉 ∈ V |
44 |
20 43
|
jctil |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) ) |
46 |
|
fvsng |
⊢ ( ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
47 |
45 46
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
48 |
42 47
|
syl5eq |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = 𝐼 ) |
49 |
36 41 48
|
3eqtrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = 𝐼 ) |
50 |
22 31 49
|
3eqtr4d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |