| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmod1.m |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
| 2 |
|
eqidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
| 3 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
| 4 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
| 5 |
1
|
lmodsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑀 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 7 |
4 6
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ ( Scalar ‘ 𝑀 ) ) = ( +g ‘ 𝑅 ) ) |
| 9 |
8
|
oveqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) = ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) ) |
| 10 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 14 |
12 13
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
4 10 11 14
|
syl3anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
9 15
|
eqeltrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ { 𝐼 } ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼 ∈ { 𝐼 } ) |
| 20 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ 𝑉 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 22 |
2 3 16 19 21
|
ovmpod |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 𝐼 ) = 𝐼 ) |
| 23 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 24 |
|
snex |
⊢ { 𝐼 } ∈ V |
| 25 |
23 24
|
pm3.2i |
⊢ ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) |
| 26 |
|
mpoexga |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
| 27 |
25 26
|
mp1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
| 28 |
1
|
lmodvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
| 30 |
29
|
eqcomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ·𝑠 ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
| 31 |
30
|
oveqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 𝐼 ) ) |
| 32 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = 𝑞 ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
| 33 |
30 32 10 19 19
|
ovmpod |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
| 34 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 = 𝑟 ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
| 35 |
30 34 11 19 19
|
ovmpod |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
| 36 |
33 35
|
oveq12d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) |
| 37 |
|
snex |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V |
| 38 |
1
|
lmodplusg |
⊢ ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
| 39 |
37 38
|
mp1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
| 40 |
39
|
eqcomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ 𝑀 ) = { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ) |
| 41 |
40
|
oveqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) ) |
| 42 |
|
df-ov |
⊢ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) |
| 43 |
|
opex |
⊢ 〈 𝐼 , 𝐼 〉 ∈ V |
| 44 |
20 43
|
jctil |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) ) |
| 46 |
|
fvsng |
⊢ ( ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
| 48 |
42 47
|
eqtrid |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = 𝐼 ) |
| 49 |
36 41 48
|
3eqtrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = 𝐼 ) |
| 50 |
22 31 49
|
3eqtr4d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |