Metamath Proof Explorer


Theorem lmod1lem3

Description: Lemma 3 for lmod1 . (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
Assertion lmod1lem3 I V R Ring q Base R r Base R q + Scalar M r M I = q M I + M r M I

Proof

Step Hyp Ref Expression
1 lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
2 eqidd I V R Ring q Base R r Base R x Base R , y I y = x Base R , y I y
3 simprr I V R Ring q Base R r Base R x = q + Scalar M r y = I y = I
4 simplr I V R Ring q Base R r Base R R Ring
5 1 lmodsca R Ring R = Scalar M
6 5 fveq2d R Ring + R = + Scalar M
7 4 6 syl I V R Ring q Base R r Base R + R = + Scalar M
8 7 eqcomd I V R Ring q Base R r Base R + Scalar M = + R
9 8 oveqd I V R Ring q Base R r Base R q + Scalar M r = q + R r
10 simprl I V R Ring q Base R r Base R q Base R
11 simprr I V R Ring q Base R r Base R r Base R
12 eqid Base R = Base R
13 eqid + R = + R
14 12 13 ringacl R Ring q Base R r Base R q + R r Base R
15 4 10 11 14 syl3anc I V R Ring q Base R r Base R q + R r Base R
16 9 15 eqeltrd I V R Ring q Base R r Base R q + Scalar M r Base R
17 snidg I V I I
18 17 adantr I V R Ring I I
19 18 adantr I V R Ring q Base R r Base R I I
20 simpl I V R Ring I V
21 20 adantr I V R Ring q Base R r Base R I V
22 2 3 16 19 21 ovmpod I V R Ring q Base R r Base R q + Scalar M r x Base R , y I y I = I
23 fvex Base R V
24 snex I V
25 23 24 pm3.2i Base R V I V
26 mpoexga Base R V I V x Base R , y I y V
27 25 26 mp1i I V R Ring q Base R r Base R x Base R , y I y V
28 1 lmodvsca x Base R , y I y V x Base R , y I y = M
29 27 28 syl I V R Ring q Base R r Base R x Base R , y I y = M
30 29 eqcomd I V R Ring q Base R r Base R M = x Base R , y I y
31 30 oveqd I V R Ring q Base R r Base R q + Scalar M r M I = q + Scalar M r x Base R , y I y I
32 simprr I V R Ring q Base R r Base R x = q y = I y = I
33 30 32 10 19 19 ovmpod I V R Ring q Base R r Base R q M I = I
34 simprr I V R Ring q Base R r Base R x = r y = I y = I
35 30 34 11 19 19 ovmpod I V R Ring q Base R r Base R r M I = I
36 33 35 oveq12d I V R Ring q Base R r Base R q M I + M r M I = I + M I
37 snex I I I V
38 1 lmodplusg I I I V I I I = + M
39 37 38 mp1i I V R Ring q Base R r Base R I I I = + M
40 39 eqcomd I V R Ring q Base R r Base R + M = I I I
41 40 oveqd I V R Ring q Base R r Base R I + M I = I I I I I
42 df-ov I I I I I = I I I I I
43 opex I I V
44 20 43 jctil I V R Ring I I V I V
45 44 adantr I V R Ring q Base R r Base R I I V I V
46 fvsng I I V I V I I I I I = I
47 45 46 syl I V R Ring q Base R r Base R I I I I I = I
48 42 47 syl5eq I V R Ring q Base R r Base R I I I I I = I
49 36 41 48 3eqtrd I V R Ring q Base R r Base R q M I + M r M I = I
50 22 31 49 3eqtr4d I V R Ring q Base R r Base R q + Scalar M r M I = q M I + M r M I