| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 2 |  | eqidd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) | 
						
							| 3 |  | simprr |  |-  ( ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) /\ ( x = ( q ( +g ` ( Scalar ` M ) ) r ) /\ y = I ) ) -> y = I ) | 
						
							| 4 |  | simplr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> R e. Ring ) | 
						
							| 5 | 1 | lmodsca |  |-  ( R e. Ring -> R = ( Scalar ` M ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( R e. Ring -> ( +g ` R ) = ( +g ` ( Scalar ` M ) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( +g ` R ) = ( +g ` ( Scalar ` M ) ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( +g ` ( Scalar ` M ) ) = ( +g ` R ) ) | 
						
							| 9 | 8 | oveqd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( +g ` ( Scalar ` M ) ) r ) = ( q ( +g ` R ) r ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> q e. ( Base ` R ) ) | 
						
							| 11 |  | simprr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> r e. ( Base ` R ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 13 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 14 | 12 13 | ringacl |  |-  ( ( R e. Ring /\ q e. ( Base ` R ) /\ r e. ( Base ` R ) ) -> ( q ( +g ` R ) r ) e. ( Base ` R ) ) | 
						
							| 15 | 4 10 11 14 | syl3anc |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( +g ` R ) r ) e. ( Base ` R ) ) | 
						
							| 16 | 9 15 | eqeltrd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( +g ` ( Scalar ` M ) ) r ) e. ( Base ` R ) ) | 
						
							| 17 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 18 | 17 | adantr |  |-  ( ( I e. V /\ R e. Ring ) -> I e. { I } ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> I e. { I } ) | 
						
							| 20 |  | simpl |  |-  ( ( I e. V /\ R e. Ring ) -> I e. V ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> I e. V ) | 
						
							| 22 | 2 3 16 19 21 | ovmpod |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( x e. ( Base ` R ) , y e. { I } |-> y ) I ) = I ) | 
						
							| 23 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 24 |  | snex |  |-  { I } e. _V | 
						
							| 25 | 23 24 | pm3.2i |  |-  ( ( Base ` R ) e. _V /\ { I } e. _V ) | 
						
							| 26 |  | mpoexga |  |-  ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) | 
						
							| 27 | 25 26 | mp1i |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) | 
						
							| 28 | 1 | lmodvsca |  |-  ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) | 
						
							| 31 | 30 | oveqd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( +g ` ( Scalar ` M ) ) r ) ( x e. ( Base ` R ) , y e. { I } |-> y ) I ) ) | 
						
							| 32 |  | simprr |  |-  ( ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) /\ ( x = q /\ y = I ) ) -> y = I ) | 
						
							| 33 | 30 32 10 19 19 | ovmpod |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( .s ` M ) I ) = I ) | 
						
							| 34 |  | simprr |  |-  ( ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) /\ ( x = r /\ y = I ) ) -> y = I ) | 
						
							| 35 | 30 34 11 19 19 | ovmpod |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( r ( .s ` M ) I ) = I ) | 
						
							| 36 | 33 35 | oveq12d |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) = ( I ( +g ` M ) I ) ) | 
						
							| 37 |  | snex |  |-  { <. <. I , I >. , I >. } e. _V | 
						
							| 38 | 1 | lmodplusg |  |-  ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` M ) ) | 
						
							| 39 | 37 38 | mp1i |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> { <. <. I , I >. , I >. } = ( +g ` M ) ) | 
						
							| 40 | 39 | eqcomd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( +g ` M ) = { <. <. I , I >. , I >. } ) | 
						
							| 41 | 40 | oveqd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( I ( +g ` M ) I ) = ( I { <. <. I , I >. , I >. } I ) ) | 
						
							| 42 |  | df-ov |  |-  ( I { <. <. I , I >. , I >. } I ) = ( { <. <. I , I >. , I >. } ` <. I , I >. ) | 
						
							| 43 |  | opex |  |-  <. I , I >. e. _V | 
						
							| 44 | 20 43 | jctil |  |-  ( ( I e. V /\ R e. Ring ) -> ( <. I , I >. e. _V /\ I e. V ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( <. I , I >. e. _V /\ I e. V ) ) | 
						
							| 46 |  | fvsng |  |-  ( ( <. I , I >. e. _V /\ I e. V ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) | 
						
							| 48 | 42 47 | eqtrid |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( I { <. <. I , I >. , I >. } I ) = I ) | 
						
							| 49 | 36 41 48 | 3eqtrd |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) = I ) | 
						
							| 50 | 22 31 49 | 3eqtr4d |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( ( q ( +g ` ( Scalar ` M ) ) r ) ( .s ` M ) I ) = ( ( q ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |