Metamath Proof Explorer


Theorem lmod1lem4

Description: Lemma 4 for lmod1 . (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
Assertion lmod1lem4 I V R Ring q Base R r Base R q Scalar M r M I = q M r M I

Proof

Step Hyp Ref Expression
1 lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
2 fvex Base R V
3 snex I V
4 2 3 pm3.2i Base R V I V
5 4 a1i I V R Ring q Base R r Base R Base R V I V
6 mpoexga Base R V I V x Base R , y I y V
7 1 lmodvsca x Base R , y I y V x Base R , y I y = M
8 5 6 7 3syl I V R Ring q Base R r Base R x Base R , y I y = M
9 8 eqcomd I V R Ring q Base R r Base R M = x Base R , y I y
10 simprr I V R Ring q Base R r Base R x = q y = I y = I
11 simprl I V R Ring q Base R r Base R q Base R
12 snidg I V I I
13 12 ad2antrr I V R Ring q Base R r Base R I I
14 9 10 11 13 13 ovmpod I V R Ring q Base R r Base R q M I = I
15 simprr I V R Ring q Base R r Base R x = r y = I y = I
16 simprr I V R Ring q Base R r Base R r Base R
17 9 15 16 13 13 ovmpod I V R Ring q Base R r Base R r M I = I
18 17 oveq2d I V R Ring q Base R r Base R q M r M I = q M I
19 simprr I V R Ring q Base R r Base R x = q Scalar M r y = I y = I
20 simplr I V R Ring q Base R r Base R R Ring
21 1 lmodsca R Ring R = Scalar M
22 21 fveq2d R Ring R = Scalar M
23 20 22 syl I V R Ring q Base R r Base R R = Scalar M
24 23 eqcomd I V R Ring q Base R r Base R Scalar M = R
25 24 oveqd I V R Ring q Base R r Base R q Scalar M r = q R r
26 eqid Base R = Base R
27 eqid R = R
28 26 27 ringcl R Ring q Base R r Base R q R r Base R
29 20 11 16 28 syl3anc I V R Ring q Base R r Base R q R r Base R
30 25 29 eqeltrd I V R Ring q Base R r Base R q Scalar M r Base R
31 9 19 30 13 13 ovmpod I V R Ring q Base R r Base R q Scalar M r M I = I
32 14 18 31 3eqtr4rd I V R Ring q Base R r Base R q Scalar M r M I = q M r M I