Metamath Proof Explorer


Theorem lmod1lem5

Description: Lemma 5 for lmod1 . (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
Assertion lmod1lem5 I V R Ring 1 Scalar M M I = I

Proof

Step Hyp Ref Expression
1 lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
2 fvex Base R V
3 snex I V
4 2 3 pm3.2i Base R V I V
5 4 a1i I V R Ring Base R V I V
6 mpoexga Base R V I V x Base R , y I y V
7 1 lmodvsca x Base R , y I y V x Base R , y I y = M
8 5 6 7 3syl I V R Ring x Base R , y I y = M
9 8 eqcomd I V R Ring M = x Base R , y I y
10 simprr I V R Ring x = 1 Scalar M y = I y = I
11 1 lmodsca R Ring R = Scalar M
12 11 adantl I V R Ring R = Scalar M
13 12 eqcomd I V R Ring Scalar M = R
14 13 fveq2d I V R Ring 1 Scalar M = 1 R
15 eqid Base R = Base R
16 eqid 1 R = 1 R
17 15 16 ringidcl R Ring 1 R Base R
18 17 adantl I V R Ring 1 R Base R
19 14 18 eqeltrd I V R Ring 1 Scalar M Base R
20 snidg I V I I
21 20 adantr I V R Ring I I
22 9 10 19 21 21 ovmpod I V R Ring 1 Scalar M M I = I