Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
2 |
|
fvex |
|- ( Base ` R ) e. _V |
3 |
|
snex |
|- { I } e. _V |
4 |
2 3
|
pm3.2i |
|- ( ( Base ` R ) e. _V /\ { I } e. _V ) |
5 |
4
|
a1i |
|- ( ( I e. V /\ R e. Ring ) -> ( ( Base ` R ) e. _V /\ { I } e. _V ) ) |
6 |
|
mpoexga |
|- ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) |
7 |
1
|
lmodvsca |
|- ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
8 |
5 6 7
|
3syl |
|- ( ( I e. V /\ R e. Ring ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
9 |
8
|
eqcomd |
|- ( ( I e. V /\ R e. Ring ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) |
10 |
|
simprr |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( x = ( 1r ` ( Scalar ` M ) ) /\ y = I ) ) -> y = I ) |
11 |
1
|
lmodsca |
|- ( R e. Ring -> R = ( Scalar ` M ) ) |
12 |
11
|
adantl |
|- ( ( I e. V /\ R e. Ring ) -> R = ( Scalar ` M ) ) |
13 |
12
|
eqcomd |
|- ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) = R ) |
14 |
13
|
fveq2d |
|- ( ( I e. V /\ R e. Ring ) -> ( 1r ` ( Scalar ` M ) ) = ( 1r ` R ) ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
17 |
15 16
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
18 |
17
|
adantl |
|- ( ( I e. V /\ R e. Ring ) -> ( 1r ` R ) e. ( Base ` R ) ) |
19 |
14 18
|
eqeltrd |
|- ( ( I e. V /\ R e. Ring ) -> ( 1r ` ( Scalar ` M ) ) e. ( Base ` R ) ) |
20 |
|
snidg |
|- ( I e. V -> I e. { I } ) |
21 |
20
|
adantr |
|- ( ( I e. V /\ R e. Ring ) -> I e. { I } ) |
22 |
9 10 19 21 21
|
ovmpod |
|- ( ( I e. V /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) |