| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) | 
						
							| 2 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 3 |  | snex |  |-  { I } e. _V | 
						
							| 4 | 2 3 | pm3.2i |  |-  ( ( Base ` R ) e. _V /\ { I } e. _V ) | 
						
							| 5 | 4 | a1i |  |-  ( ( I e. V /\ R e. Ring ) -> ( ( Base ` R ) e. _V /\ { I } e. _V ) ) | 
						
							| 6 |  | mpoexga |  |-  ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) | 
						
							| 7 | 1 | lmodvsca |  |-  ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ( I e. V /\ R e. Ring ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( I e. V /\ R e. Ring ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ( I e. V /\ R e. Ring ) /\ ( x = ( 1r ` ( Scalar ` M ) ) /\ y = I ) ) -> y = I ) | 
						
							| 11 | 1 | lmodsca |  |-  ( R e. Ring -> R = ( Scalar ` M ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( I e. V /\ R e. Ring ) -> R = ( Scalar ` M ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) = R ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( I e. V /\ R e. Ring ) -> ( 1r ` ( Scalar ` M ) ) = ( 1r ` R ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 16 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 17 | 15 16 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( I e. V /\ R e. Ring ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 19 | 14 18 | eqeltrd |  |-  ( ( I e. V /\ R e. Ring ) -> ( 1r ` ( Scalar ` M ) ) e. ( Base ` R ) ) | 
						
							| 20 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 21 | 20 | adantr |  |-  ( ( I e. V /\ R e. Ring ) -> I e. { I } ) | 
						
							| 22 | 9 10 19 21 21 | ovmpod |  |-  ( ( I e. V /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) |