| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmod1.m |
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
| 2 |
|
fvex |
|- ( Base ` R ) e. _V |
| 3 |
|
snex |
|- { I } e. _V |
| 4 |
2 3
|
pm3.2i |
|- ( ( Base ` R ) e. _V /\ { I } e. _V ) |
| 5 |
4
|
a1i |
|- ( ( I e. V /\ R e. Ring ) -> ( ( Base ` R ) e. _V /\ { I } e. _V ) ) |
| 6 |
|
mpoexga |
|- ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) |
| 7 |
1
|
lmodvsca |
|- ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
| 8 |
5 6 7
|
3syl |
|- ( ( I e. V /\ R e. Ring ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
| 9 |
8
|
eqcomd |
|- ( ( I e. V /\ R e. Ring ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) |
| 10 |
|
simprr |
|- ( ( ( I e. V /\ R e. Ring ) /\ ( x = ( 1r ` ( Scalar ` M ) ) /\ y = I ) ) -> y = I ) |
| 11 |
1
|
lmodsca |
|- ( R e. Ring -> R = ( Scalar ` M ) ) |
| 12 |
11
|
adantl |
|- ( ( I e. V /\ R e. Ring ) -> R = ( Scalar ` M ) ) |
| 13 |
12
|
eqcomd |
|- ( ( I e. V /\ R e. Ring ) -> ( Scalar ` M ) = R ) |
| 14 |
13
|
fveq2d |
|- ( ( I e. V /\ R e. Ring ) -> ( 1r ` ( Scalar ` M ) ) = ( 1r ` R ) ) |
| 15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 16 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 17 |
15 16
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 18 |
17
|
adantl |
|- ( ( I e. V /\ R e. Ring ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 19 |
14 18
|
eqeltrd |
|- ( ( I e. V /\ R e. Ring ) -> ( 1r ` ( Scalar ` M ) ) e. ( Base ` R ) ) |
| 20 |
|
snidg |
|- ( I e. V -> I e. { I } ) |
| 21 |
20
|
adantr |
|- ( ( I e. V /\ R e. Ring ) -> I e. { I } ) |
| 22 |
9 10 19 21 21
|
ovmpod |
|- ( ( I e. V /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) I ) = I ) |