Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
⊢ 𝑀 = ( { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) 〉 } ) |
2 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
3 |
|
snex |
⊢ { 𝐼 } ∈ V |
4 |
2 3
|
pm3.2i |
⊢ ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) |
5 |
|
mpoexga |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
6 |
4 5
|
mp1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
7 |
1
|
lmodvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ·𝑠 ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
10 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 = 𝑟 ∧ 𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 ) |
11 |
|
simp3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) ) |
12 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ { 𝐼 } ) |
14 |
9 10 11 13 13
|
ovmpod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
15 |
|
snex |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V |
16 |
1
|
lmodplusg |
⊢ ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
17 |
15 16
|
mp1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
18 |
17
|
eqcomd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( +g ‘ 𝑀 ) = { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ) |
19 |
18
|
oveqd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) ) |
20 |
|
df-ov |
⊢ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) |
21 |
|
opex |
⊢ 〈 𝐼 , 𝐼 〉 ∈ V |
22 |
|
simp1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ 𝑉 ) |
23 |
|
fvsng |
⊢ ( ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
24 |
21 22 23
|
sylancr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
25 |
20 24
|
syl5eq |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = 𝐼 ) |
26 |
19 25
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) |
28 |
3
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → { 𝐼 } ∈ V ) |
29 |
2 28 5
|
sylancr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V ) |
30 |
29 7
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠 ‘ 𝑀 ) ) |
31 |
30
|
eqcomd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ·𝑠 ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ) |
32 |
31 10 11 13 13
|
ovmpod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) = 𝐼 ) |
33 |
32 32
|
oveq12d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) |
34 |
33 26
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) = 𝐼 ) |
35 |
14 27 34
|
3eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 ( ·𝑠 ‘ 𝑀 ) 𝐼 ) ) ) |