| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1.m | ⊢ 𝑀  =  ( { 〈 ( Base ‘ ndx ) ,  { 𝐼 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) 〉 } ) | 
						
							| 2 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 3 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 4 | 2 3 | pm3.2i | ⊢ ( ( Base ‘ 𝑅 )  ∈  V  ∧  { 𝐼 }  ∈  V ) | 
						
							| 5 |  | mpoexga | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  V  ∧  { 𝐼 }  ∈  V )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  ∈  V ) | 
						
							| 6 | 4 5 | mp1i | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  ∈  V ) | 
						
							| 7 | 1 | lmodvsca | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  ∈  V  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  =  (  ·𝑠  ‘ 𝑀 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  =  (  ·𝑠  ‘ 𝑀 ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  (  ·𝑠  ‘ 𝑀 )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑥  =  𝑟  ∧  𝑦  =  𝐼 ) )  →  𝑦  =  𝐼 ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  𝑟  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 12 |  | snidg | ⊢ ( 𝐼  ∈  𝑉  →  𝐼  ∈  { 𝐼 } ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  𝐼  ∈  { 𝐼 } ) | 
						
							| 14 | 9 10 11 13 13 | ovmpod | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) | 
						
							| 15 |  | snex | ⊢ { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  ∈  V | 
						
							| 16 | 1 | lmodplusg | ⊢ ( { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  ∈  V  →  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  =  ( +g ‘ 𝑀 ) ) | 
						
							| 17 | 15 16 | mp1i | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 }  =  ( +g ‘ 𝑀 ) ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( +g ‘ 𝑀 )  =  { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } ) | 
						
							| 19 | 18 | oveqd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 )  =  ( 𝐼 { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 𝐼 ) ) | 
						
							| 20 |  | df-ov | ⊢ ( 𝐼 { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 𝐼 )  =  ( { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } ‘ 〈 𝐼 ,  𝐼 〉 ) | 
						
							| 21 |  | opex | ⊢ 〈 𝐼 ,  𝐼 〉  ∈  V | 
						
							| 22 |  | simp1 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 23 |  | fvsng | ⊢ ( ( 〈 𝐼 ,  𝐼 〉  ∈  V  ∧  𝐼  ∈  𝑉 )  →  ( { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } ‘ 〈 𝐼 ,  𝐼 〉 )  =  𝐼 ) | 
						
							| 24 | 21 22 23 | sylancr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } ‘ 〈 𝐼 ,  𝐼 〉 )  =  𝐼 ) | 
						
							| 25 | 20 24 | eqtrid | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼 { 〈 〈 𝐼 ,  𝐼 〉 ,  𝐼 〉 } 𝐼 )  =  𝐼 ) | 
						
							| 26 | 19 25 | eqtrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 )  =  𝐼 ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 28 | 3 | a1i | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  { 𝐼 }  ∈  V ) | 
						
							| 29 | 2 28 5 | sylancr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  ∈  V ) | 
						
							| 30 | 29 7 | syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 )  =  (  ·𝑠  ‘ 𝑀 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  (  ·𝑠  ‘ 𝑀 )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  { 𝐼 }  ↦  𝑦 ) ) | 
						
							| 32 | 31 10 11 13 13 | ovmpod | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 )  =  𝐼 ) | 
						
							| 33 | 32 32 | oveq12d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  =  ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) ) | 
						
							| 34 | 33 26 | eqtrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) )  =  𝐼 ) | 
						
							| 35 | 14 27 34 | 3eqtr4d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑀 ) ( 𝐼 ( +g ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ( +g ‘ 𝑀 ) ( 𝑟 (  ·𝑠  ‘ 𝑀 ) 𝐼 ) ) ) |