Metamath Proof Explorer


Theorem lmod1lem2

Description: Lemma 2 for lmod1 . (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
Assertion lmod1lem2 ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 lmod1.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ⟩ } )
2 fvex ( Base ‘ 𝑅 ) ∈ V
3 snex { 𝐼 } ∈ V
4 2 3 pm3.2i ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V )
5 mpoexga ( ( ( Base ‘ 𝑅 ) ∈ V ∧ { 𝐼 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V )
6 4 5 mp1i ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V )
7 1 lmodvsca ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
8 6 7 syl ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
9 8 eqcomd ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ·𝑠𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) )
10 simprr ( ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 = 𝑟𝑦 = 𝐼 ) ) → 𝑦 = 𝐼 )
11 simp3 ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → 𝑟 ∈ ( Base ‘ 𝑅 ) )
12 snidg ( 𝐼𝑉𝐼 ∈ { 𝐼 } )
13 12 3ad2ant1 ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ { 𝐼 } )
14 9 10 11 13 13 ovmpod ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
15 snex { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ∈ V
16 1 lmodplusg ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ∈ V → { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } = ( +g𝑀 ) )
17 15 16 mp1i ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } = ( +g𝑀 ) )
18 17 eqcomd ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( +g𝑀 ) = { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } )
19 18 oveqd ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ( +g𝑀 ) 𝐼 ) = ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) )
20 df-ov ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ‘ ⟨ 𝐼 , 𝐼 ⟩ )
21 opex 𝐼 , 𝐼 ⟩ ∈ V
22 simp1 ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → 𝐼𝑉 )
23 fvsng ( ( ⟨ 𝐼 , 𝐼 ⟩ ∈ V ∧ 𝐼𝑉 ) → ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ‘ ⟨ 𝐼 , 𝐼 ⟩ ) = 𝐼 )
24 21 22 23 sylancr ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ‘ ⟨ 𝐼 , 𝐼 ⟩ ) = 𝐼 )
25 20 24 syl5eq ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = 𝐼 )
26 19 25 eqtrd ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ( +g𝑀 ) 𝐼 ) = 𝐼 )
27 26 oveq2d ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) )
28 3 a1i ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → { 𝐼 } ∈ V )
29 2 28 5 sylancr ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) ∈ V )
30 29 7 syl ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) = ( ·𝑠𝑀 ) )
31 30 eqcomd ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ·𝑠𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ { 𝐼 } ↦ 𝑦 ) )
32 31 10 11 13 13 ovmpod ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) = 𝐼 )
33 32 32 oveq12d ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) = ( 𝐼 ( +g𝑀 ) 𝐼 ) )
34 33 26 eqtrd ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) = 𝐼 )
35 14 27 34 3eqtr4d ( ( 𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 ( ·𝑠𝑀 ) ( 𝐼 ( +g𝑀 ) 𝐼 ) ) = ( ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ( +g𝑀 ) ( 𝑟 ( ·𝑠𝑀 ) 𝐼 ) ) )