Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } ) |
2 |
|
fvex |
|- ( Base ` R ) e. _V |
3 |
|
snex |
|- { I } e. _V |
4 |
2 3
|
pm3.2i |
|- ( ( Base ` R ) e. _V /\ { I } e. _V ) |
5 |
|
mpoexga |
|- ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) |
6 |
4 5
|
mp1i |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) |
7 |
1
|
lmodvsca |
|- ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
8 |
6 7
|
syl |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
9 |
8
|
eqcomd |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) |
10 |
|
simprr |
|- ( ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) /\ ( x = r /\ y = I ) ) -> y = I ) |
11 |
|
simp3 |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> r e. ( Base ` R ) ) |
12 |
|
snidg |
|- ( I e. V -> I e. { I } ) |
13 |
12
|
3ad2ant1 |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> I e. { I } ) |
14 |
9 10 11 13 13
|
ovmpod |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) = I ) |
15 |
|
snex |
|- { <. <. I , I >. , I >. } e. _V |
16 |
1
|
lmodplusg |
|- ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` M ) ) |
17 |
15 16
|
mp1i |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> { <. <. I , I >. , I >. } = ( +g ` M ) ) |
18 |
17
|
eqcomd |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( +g ` M ) = { <. <. I , I >. , I >. } ) |
19 |
18
|
oveqd |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( I ( +g ` M ) I ) = ( I { <. <. I , I >. , I >. } I ) ) |
20 |
|
df-ov |
|- ( I { <. <. I , I >. , I >. } I ) = ( { <. <. I , I >. , I >. } ` <. I , I >. ) |
21 |
|
opex |
|- <. I , I >. e. _V |
22 |
|
simp1 |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> I e. V ) |
23 |
|
fvsng |
|- ( ( <. I , I >. e. _V /\ I e. V ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) |
24 |
21 22 23
|
sylancr |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) |
25 |
20 24
|
syl5eq |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( I { <. <. I , I >. , I >. } I ) = I ) |
26 |
19 25
|
eqtrd |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( I ( +g ` M ) I ) = I ) |
27 |
26
|
oveq2d |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( r ( .s ` M ) I ) ) |
28 |
3
|
a1i |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> { I } e. _V ) |
29 |
2 28 5
|
sylancr |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V ) |
30 |
29 7
|
syl |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) ) |
31 |
30
|
eqcomd |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) ) |
32 |
31 10 11 13 13
|
ovmpod |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) = I ) |
33 |
32 32
|
oveq12d |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) = ( I ( +g ` M ) I ) ) |
34 |
33 26
|
eqtrd |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) = I ) |
35 |
14 27 34
|
3eqtr4d |
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) ) |