Metamath Proof Explorer


Theorem lmod1lem2

Description: Lemma 2 for lmod1 . (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis lmod1.m
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } )
Assertion lmod1lem2
|- ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) )

Proof

Step Hyp Ref Expression
1 lmod1.m
 |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( x e. ( Base ` R ) , y e. { I } |-> y ) >. } )
2 fvex
 |-  ( Base ` R ) e. _V
3 snex
 |-  { I } e. _V
4 2 3 pm3.2i
 |-  ( ( Base ` R ) e. _V /\ { I } e. _V )
5 mpoexga
 |-  ( ( ( Base ` R ) e. _V /\ { I } e. _V ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V )
6 4 5 mp1i
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V )
7 1 lmodvsca
 |-  ( ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) )
8 6 7 syl
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) )
9 8 eqcomd
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) )
10 simprr
 |-  ( ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) /\ ( x = r /\ y = I ) ) -> y = I )
11 simp3
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> r e. ( Base ` R ) )
12 snidg
 |-  ( I e. V -> I e. { I } )
13 12 3ad2ant1
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> I e. { I } )
14 9 10 11 13 13 ovmpod
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) = I )
15 snex
 |-  { <. <. I , I >. , I >. } e. _V
16 1 lmodplusg
 |-  ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` M ) )
17 15 16 mp1i
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> { <. <. I , I >. , I >. } = ( +g ` M ) )
18 17 eqcomd
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( +g ` M ) = { <. <. I , I >. , I >. } )
19 18 oveqd
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( I ( +g ` M ) I ) = ( I { <. <. I , I >. , I >. } I ) )
20 df-ov
 |-  ( I { <. <. I , I >. , I >. } I ) = ( { <. <. I , I >. , I >. } ` <. I , I >. )
21 opex
 |-  <. I , I >. e. _V
22 simp1
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> I e. V )
23 fvsng
 |-  ( ( <. I , I >. e. _V /\ I e. V ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I )
24 21 22 23 sylancr
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I )
25 20 24 syl5eq
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( I { <. <. I , I >. , I >. } I ) = I )
26 19 25 eqtrd
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( I ( +g ` M ) I ) = I )
27 26 oveq2d
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( r ( .s ` M ) I ) )
28 3 a1i
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> { I } e. _V )
29 2 28 5 sylancr
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) e. _V )
30 29 7 syl
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( x e. ( Base ` R ) , y e. { I } |-> y ) = ( .s ` M ) )
31 30 eqcomd
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( .s ` M ) = ( x e. ( Base ` R ) , y e. { I } |-> y ) )
32 31 10 11 13 13 ovmpod
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) I ) = I )
33 32 32 oveq12d
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) = ( I ( +g ` M ) I ) )
34 33 26 eqtrd
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) = I )
35 14 27 34 3eqtr4d
 |-  ( ( I e. V /\ R e. Ring /\ r e. ( Base ` R ) ) -> ( r ( .s ` M ) ( I ( +g ` M ) I ) ) = ( ( r ( .s ` M ) I ) ( +g ` M ) ( r ( .s ` M ) I ) ) )