| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1zr.r |  |-  R = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } | 
						
							| 2 |  | lmod1zr.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } ) | 
						
							| 3 |  | elsni |  |-  ( p e. { <. Z , I >. } -> p = <. Z , I >. ) | 
						
							| 4 |  | fveq2 |  |-  ( p = <. Z , I >. -> ( 2nd ` p ) = ( 2nd ` <. Z , I >. ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( I e. V /\ Z e. W ) /\ p = <. Z , I >. ) -> ( 2nd ` p ) = ( 2nd ` <. Z , I >. ) ) | 
						
							| 6 |  | op2ndg |  |-  ( ( Z e. W /\ I e. V ) -> ( 2nd ` <. Z , I >. ) = I ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( I e. V /\ Z e. W ) -> ( 2nd ` <. Z , I >. ) = I ) | 
						
							| 8 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 9 | 8 | adantr |  |-  ( ( I e. V /\ Z e. W ) -> I e. { I } ) | 
						
							| 10 | 7 9 | eqeltrd |  |-  ( ( I e. V /\ Z e. W ) -> ( 2nd ` <. Z , I >. ) e. { I } ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( I e. V /\ Z e. W ) /\ p = <. Z , I >. ) -> ( 2nd ` <. Z , I >. ) e. { I } ) | 
						
							| 12 | 5 11 | eqeltrd |  |-  ( ( ( I e. V /\ Z e. W ) /\ p = <. Z , I >. ) -> ( 2nd ` p ) e. { I } ) | 
						
							| 13 | 3 12 | sylan2 |  |-  ( ( ( I e. V /\ Z e. W ) /\ p e. { <. Z , I >. } ) -> ( 2nd ` p ) e. { I } ) | 
						
							| 14 | 13 | fmpttd |  |-  ( ( I e. V /\ Z e. W ) -> ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) : { <. Z , I >. } --> { I } ) | 
						
							| 15 |  | opex |  |-  <. Z , I >. e. _V | 
						
							| 16 |  | simpl |  |-  ( ( I e. V /\ Z e. W ) -> I e. V ) | 
						
							| 17 |  | fsng |  |-  ( ( <. Z , I >. e. _V /\ I e. V ) -> ( ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) : { <. Z , I >. } --> { I } <-> ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) = { <. <. Z , I >. , I >. } ) ) | 
						
							| 18 | 15 16 17 | sylancr |  |-  ( ( I e. V /\ Z e. W ) -> ( ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) : { <. Z , I >. } --> { I } <-> ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) = { <. <. Z , I >. , I >. } ) ) | 
						
							| 19 | 14 18 | mpbid |  |-  ( ( I e. V /\ Z e. W ) -> ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) = { <. <. Z , I >. , I >. } ) | 
						
							| 20 |  | xpsng |  |-  ( ( Z e. W /\ I e. V ) -> ( { Z } X. { I } ) = { <. Z , I >. } ) | 
						
							| 21 | 20 | ancoms |  |-  ( ( I e. V /\ Z e. W ) -> ( { Z } X. { I } ) = { <. Z , I >. } ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( I e. V /\ Z e. W ) -> { <. Z , I >. } = ( { Z } X. { I } ) ) | 
						
							| 23 | 22 | mpteq1d |  |-  ( ( I e. V /\ Z e. W ) -> ( p e. { <. Z , I >. } |-> ( 2nd ` p ) ) = ( p e. ( { Z } X. { I } ) |-> ( 2nd ` p ) ) ) | 
						
							| 24 | 19 23 | eqtr3d |  |-  ( ( I e. V /\ Z e. W ) -> { <. <. Z , I >. , I >. } = ( p e. ( { Z } X. { I } ) |-> ( 2nd ` p ) ) ) | 
						
							| 25 |  | vex |  |-  z e. _V | 
						
							| 26 |  | vex |  |-  i e. _V | 
						
							| 27 | 25 26 | op2ndd |  |-  ( p = <. z , i >. -> ( 2nd ` p ) = i ) | 
						
							| 28 | 27 | mpompt |  |-  ( p e. ( { Z } X. { I } ) |-> ( 2nd ` p ) ) = ( z e. { Z } , i e. { I } |-> i ) | 
						
							| 29 | 28 | a1i |  |-  ( ( I e. V /\ Z e. W ) -> ( p e. ( { Z } X. { I } ) |-> ( 2nd ` p ) ) = ( z e. { Z } , i e. { I } |-> i ) ) | 
						
							| 30 |  | snex |  |-  { Z } e. _V | 
						
							| 31 | 1 | rngbase |  |-  ( { Z } e. _V -> { Z } = ( Base ` R ) ) | 
						
							| 32 | 30 31 | mp1i |  |-  ( ( I e. V /\ Z e. W ) -> { Z } = ( Base ` R ) ) | 
						
							| 33 |  | eqidd |  |-  ( ( I e. V /\ Z e. W ) -> { I } = { I } ) | 
						
							| 34 |  | mpoeq12 |  |-  ( ( { Z } = ( Base ` R ) /\ { I } = { I } ) -> ( z e. { Z } , i e. { I } |-> i ) = ( z e. ( Base ` R ) , i e. { I } |-> i ) ) | 
						
							| 35 | 32 33 34 | syl2anc |  |-  ( ( I e. V /\ Z e. W ) -> ( z e. { Z } , i e. { I } |-> i ) = ( z e. ( Base ` R ) , i e. { I } |-> i ) ) | 
						
							| 36 | 24 29 35 | 3eqtrd |  |-  ( ( I e. V /\ Z e. W ) -> { <. <. Z , I >. , I >. } = ( z e. ( Base ` R ) , i e. { I } |-> i ) ) | 
						
							| 37 | 36 | opeq2d |  |-  ( ( I e. V /\ Z e. W ) -> <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. = <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. ) | 
						
							| 38 | 37 | sneqd |  |-  ( ( I e. V /\ Z e. W ) -> { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } = { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } ) | 
						
							| 39 | 38 | uneq2d |  |-  ( ( I e. V /\ Z e. W ) -> ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } ) = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } ) ) | 
						
							| 40 | 2 39 | eqtrid |  |-  ( ( I e. V /\ Z e. W ) -> M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } ) ) | 
						
							| 41 | 1 | ring1 |  |-  ( Z e. W -> R e. Ring ) | 
						
							| 42 |  | eqidd |  |-  ( z = a -> i = i ) | 
						
							| 43 |  | id |  |-  ( i = b -> i = b ) | 
						
							| 44 | 42 43 | cbvmpov |  |-  ( z e. ( Base ` R ) , i e. { I } |-> i ) = ( a e. ( Base ` R ) , b e. { I } |-> b ) | 
						
							| 45 | 44 | opeq2i |  |-  <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. = <. ( .s ` ndx ) , ( a e. ( Base ` R ) , b e. { I } |-> b ) >. | 
						
							| 46 | 45 | sneqi |  |-  { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } = { <. ( .s ` ndx ) , ( a e. ( Base ` R ) , b e. { I } |-> b ) >. } | 
						
							| 47 | 46 | uneq2i |  |-  ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } ) = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( a e. ( Base ` R ) , b e. { I } |-> b ) >. } ) | 
						
							| 48 | 47 | lmod1 |  |-  ( ( I e. V /\ R e. Ring ) -> ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } ) e. LMod ) | 
						
							| 49 | 41 48 | sylan2 |  |-  ( ( I e. V /\ Z e. W ) -> ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( z e. ( Base ` R ) , i e. { I } |-> i ) >. } ) e. LMod ) | 
						
							| 50 | 40 49 | eqeltrd |  |-  ( ( I e. V /\ Z e. W ) -> M e. LMod ) |