| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod1zr.r |  |-  R = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } | 
						
							| 2 |  | lmod1zr.m |  |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } ) | 
						
							| 3 |  | tpex |  |-  { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } e. _V | 
						
							| 4 | 1 3 | eqeltri |  |-  R e. _V | 
						
							| 5 | 2 | lmodsca |  |-  ( R e. _V -> R = ( Scalar ` M ) ) | 
						
							| 6 | 4 5 | mp1i |  |-  ( ( I e. V /\ Z e. W ) -> R = ( Scalar ` M ) ) | 
						
							| 7 | 1 | rng1nnzr |  |-  ( Z e. W -> R e/ NzRing ) | 
						
							| 8 |  | df-nel |  |-  ( R e/ NzRing <-> -. R e. NzRing ) | 
						
							| 9 | 7 8 | sylib |  |-  ( Z e. W -> -. R e. NzRing ) | 
						
							| 10 |  | drngnzr |  |-  ( R e. DivRing -> R e. NzRing ) | 
						
							| 11 | 9 10 | nsyl |  |-  ( Z e. W -> -. R e. DivRing ) | 
						
							| 12 | 11 | adantl |  |-  ( ( I e. V /\ Z e. W ) -> -. R e. DivRing ) | 
						
							| 13 | 6 12 | eqneltrrd |  |-  ( ( I e. V /\ Z e. W ) -> -. ( Scalar ` M ) e. DivRing ) | 
						
							| 14 | 13 | intnand |  |-  ( ( I e. V /\ Z e. W ) -> -. ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) ) | 
						
							| 15 |  | df-nel |  |-  ( M e/ LVec <-> -. M e. LVec ) | 
						
							| 16 |  | eqid |  |-  ( Scalar ` M ) = ( Scalar ` M ) | 
						
							| 17 | 16 | islvec |  |-  ( M e. LVec <-> ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) ) | 
						
							| 18 | 15 17 | xchbinx |  |-  ( M e/ LVec <-> -. ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) ) | 
						
							| 19 | 14 18 | sylibr |  |-  ( ( I e. V /\ Z e. W ) -> M e/ LVec ) |