Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1zr.r |
|- R = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } |
2 |
|
lmod1zr.m |
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } ) |
3 |
|
tpex |
|- { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } e. _V |
4 |
1 3
|
eqeltri |
|- R e. _V |
5 |
2
|
lmodsca |
|- ( R e. _V -> R = ( Scalar ` M ) ) |
6 |
4 5
|
mp1i |
|- ( ( I e. V /\ Z e. W ) -> R = ( Scalar ` M ) ) |
7 |
1
|
rng1nnzr |
|- ( Z e. W -> R e/ NzRing ) |
8 |
|
df-nel |
|- ( R e/ NzRing <-> -. R e. NzRing ) |
9 |
7 8
|
sylib |
|- ( Z e. W -> -. R e. NzRing ) |
10 |
|
drngnzr |
|- ( R e. DivRing -> R e. NzRing ) |
11 |
9 10
|
nsyl |
|- ( Z e. W -> -. R e. DivRing ) |
12 |
11
|
adantl |
|- ( ( I e. V /\ Z e. W ) -> -. R e. DivRing ) |
13 |
6 12
|
eqneltrrd |
|- ( ( I e. V /\ Z e. W ) -> -. ( Scalar ` M ) e. DivRing ) |
14 |
13
|
intnand |
|- ( ( I e. V /\ Z e. W ) -> -. ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) ) |
15 |
|
df-nel |
|- ( M e/ LVec <-> -. M e. LVec ) |
16 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
17 |
16
|
islvec |
|- ( M e. LVec <-> ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) ) |
18 |
15 17
|
xchbinx |
|- ( M e/ LVec <-> -. ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) ) |
19 |
14 18
|
sylibr |
|- ( ( I e. V /\ Z e. W ) -> M e/ LVec ) |