Metamath Proof Explorer


Theorem lmod1zrnlvec

Description: There is a (left) module (azero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypotheses lmod1zr.r
|- R = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. }
lmod1zr.m
|- M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } )
Assertion lmod1zrnlvec
|- ( ( I e. V /\ Z e. W ) -> M e/ LVec )

Proof

Step Hyp Ref Expression
1 lmod1zr.r
 |-  R = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. }
2 lmod1zr.m
 |-  M = ( { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , { <. <. Z , I >. , I >. } >. } )
3 tpex
 |-  { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } e. _V
4 1 3 eqeltri
 |-  R e. _V
5 2 lmodsca
 |-  ( R e. _V -> R = ( Scalar ` M ) )
6 4 5 mp1i
 |-  ( ( I e. V /\ Z e. W ) -> R = ( Scalar ` M ) )
7 1 rng1nnzr
 |-  ( Z e. W -> R e/ NzRing )
8 df-nel
 |-  ( R e/ NzRing <-> -. R e. NzRing )
9 7 8 sylib
 |-  ( Z e. W -> -. R e. NzRing )
10 drngnzr
 |-  ( R e. DivRing -> R e. NzRing )
11 9 10 nsyl
 |-  ( Z e. W -> -. R e. DivRing )
12 11 adantl
 |-  ( ( I e. V /\ Z e. W ) -> -. R e. DivRing )
13 6 12 eqneltrrd
 |-  ( ( I e. V /\ Z e. W ) -> -. ( Scalar ` M ) e. DivRing )
14 13 intnand
 |-  ( ( I e. V /\ Z e. W ) -> -. ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) )
15 df-nel
 |-  ( M e/ LVec <-> -. M e. LVec )
16 eqid
 |-  ( Scalar ` M ) = ( Scalar ` M )
17 16 islvec
 |-  ( M e. LVec <-> ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) )
18 15 17 xchbinx
 |-  ( M e/ LVec <-> -. ( M e. LMod /\ ( Scalar ` M ) e. DivRing ) )
19 14 18 sylibr
 |-  ( ( I e. V /\ Z e. W ) -> M e/ LVec )