Metamath Proof Explorer


Theorem lmod1zrnlvec

Description: There is a (left) module (azero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypotheses lmod1zr.r 𝑅 = { ⟨ ( Base ‘ ndx ) , { 𝑍 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ }
lmod1zr.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } )
Assertion lmod1zrnlvec ( ( 𝐼𝑉𝑍𝑊 ) → 𝑀 ∉ LVec )

Proof

Step Hyp Ref Expression
1 lmod1zr.r 𝑅 = { ⟨ ( Base ‘ ndx ) , { 𝑍 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ }
2 lmod1zr.m 𝑀 = ( { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ } )
3 tpex { ⟨ ( Base ‘ ndx ) , { 𝑍 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ } ∈ V
4 1 3 eqeltri 𝑅 ∈ V
5 2 lmodsca ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑀 ) )
6 4 5 mp1i ( ( 𝐼𝑉𝑍𝑊 ) → 𝑅 = ( Scalar ‘ 𝑀 ) )
7 1 rng1nnzr ( 𝑍𝑊𝑅 ∉ NzRing )
8 df-nel ( 𝑅 ∉ NzRing ↔ ¬ 𝑅 ∈ NzRing )
9 7 8 sylib ( 𝑍𝑊 → ¬ 𝑅 ∈ NzRing )
10 drngnzr ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing )
11 9 10 nsyl ( 𝑍𝑊 → ¬ 𝑅 ∈ DivRing )
12 11 adantl ( ( 𝐼𝑉𝑍𝑊 ) → ¬ 𝑅 ∈ DivRing )
13 6 12 eqneltrrd ( ( 𝐼𝑉𝑍𝑊 ) → ¬ ( Scalar ‘ 𝑀 ) ∈ DivRing )
14 13 intnand ( ( 𝐼𝑉𝑍𝑊 ) → ¬ ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ DivRing ) )
15 df-nel ( 𝑀 ∉ LVec ↔ ¬ 𝑀 ∈ LVec )
16 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
17 16 islvec ( 𝑀 ∈ LVec ↔ ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ DivRing ) )
18 15 17 xchbinx ( 𝑀 ∉ LVec ↔ ¬ ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ DivRing ) )
19 14 18 sylibr ( ( 𝐼𝑉𝑍𝑊 ) → 𝑀 ∉ LVec )