Metamath Proof Explorer


Theorem lmod1zrnlvec

Description: There is a (left) module (azero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypotheses lmod1zr.r R = Base ndx Z + ndx Z Z Z ndx Z Z Z
lmod1zr.m M = Base ndx I + ndx I I I Scalar ndx R ndx Z I I
Assertion lmod1zrnlvec I V Z W M LVec

Proof

Step Hyp Ref Expression
1 lmod1zr.r R = Base ndx Z + ndx Z Z Z ndx Z Z Z
2 lmod1zr.m M = Base ndx I + ndx I I I Scalar ndx R ndx Z I I
3 tpex Base ndx Z + ndx Z Z Z ndx Z Z Z V
4 1 3 eqeltri R V
5 2 lmodsca R V R = Scalar M
6 4 5 mp1i I V Z W R = Scalar M
7 1 rng1nnzr Z W R NzRing
8 df-nel R NzRing ¬ R NzRing
9 7 8 sylib Z W ¬ R NzRing
10 drngnzr R DivRing R NzRing
11 9 10 nsyl Z W ¬ R DivRing
12 11 adantl I V Z W ¬ R DivRing
13 6 12 eqneltrrd I V Z W ¬ Scalar M DivRing
14 13 intnand I V Z W ¬ M LMod Scalar M DivRing
15 df-nel M LVec ¬ M LVec
16 eqid Scalar M = Scalar M
17 16 islvec M LVec M LMod Scalar M DivRing
18 15 17 xchbinx M LVec ¬ M LMod Scalar M DivRing
19 14 18 sylibr I V Z W M LVec