Metamath Proof Explorer


Theorem rng1nnzr

Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis rng1nnzr.m M = Base ndx Z + ndx Z Z Z ndx Z Z Z
Assertion rng1nnzr Z V M NzRing

Proof

Step Hyp Ref Expression
1 rng1nnzr.m M = Base ndx Z + ndx Z Z Z ndx Z Z Z
2 snex Z V
3 1 rngbase Z V Z = Base M
4 2 3 mp1i Z V Z = Base M
5 4 eqcomd Z V Base M = Z
6 5 fveq2d Z V Base M = Z
7 hashsng Z V Z = 1
8 6 7 eqtrd Z V Base M = 1
9 1 ring1 Z V M Ring
10 0ringnnzr M Ring Base M = 1 ¬ M NzRing
11 9 10 syl Z V Base M = 1 ¬ M NzRing
12 8 11 mpbid Z V ¬ M NzRing
13 df-nel M NzRing ¬ M NzRing
14 12 13 sylibr Z V M NzRing