| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 2 |
1
|
ressid |
|- ( M e. LNoeM -> ( M |`s ( Base ` M ) ) = M ) |
| 3 |
|
lnmlmod |
|- ( M e. LNoeM -> M e. LMod ) |
| 4 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
| 5 |
1 4
|
lss1 |
|- ( M e. LMod -> ( Base ` M ) e. ( LSubSp ` M ) ) |
| 6 |
3 5
|
syl |
|- ( M e. LNoeM -> ( Base ` M ) e. ( LSubSp ` M ) ) |
| 7 |
|
eqid |
|- ( M |`s ( Base ` M ) ) = ( M |`s ( Base ` M ) ) |
| 8 |
4 7
|
lnmlssfg |
|- ( ( M e. LNoeM /\ ( Base ` M ) e. ( LSubSp ` M ) ) -> ( M |`s ( Base ` M ) ) e. LFinGen ) |
| 9 |
6 8
|
mpdan |
|- ( M e. LNoeM -> ( M |`s ( Base ` M ) ) e. LFinGen ) |
| 10 |
2 9
|
eqeltrrd |
|- ( M e. LNoeM -> M e. LFinGen ) |