Metamath Proof Explorer


Theorem lnrfrlm

Description: Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypothesis lnrfrlm.y
|- Y = ( R freeLMod I )
Assertion lnrfrlm
|- ( ( R e. LNoeR /\ I e. Fin ) -> Y e. LNoeM )

Proof

Step Hyp Ref Expression
1 lnrfrlm.y
 |-  Y = ( R freeLMod I )
2 1 frlmpwsfi
 |-  ( ( R e. LNoeR /\ I e. Fin ) -> Y = ( ( ringLMod ` R ) ^s I ) )
3 lnrlnm
 |-  ( R e. LNoeR -> ( ringLMod ` R ) e. LNoeM )
4 eqid
 |-  ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I )
5 4 pwslnm
 |-  ( ( ( ringLMod ` R ) e. LNoeM /\ I e. Fin ) -> ( ( ringLMod ` R ) ^s I ) e. LNoeM )
6 3 5 sylan
 |-  ( ( R e. LNoeR /\ I e. Fin ) -> ( ( ringLMod ` R ) ^s I ) e. LNoeM )
7 2 6 eqeltrd
 |-  ( ( R e. LNoeR /\ I e. Fin ) -> Y e. LNoeM )