Metamath Proof Explorer


Theorem lnrfrlm

Description: Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypothesis lnrfrlm.y Y=RfreeLModI
Assertion lnrfrlm RLNoeRIFinYLNoeM

Proof

Step Hyp Ref Expression
1 lnrfrlm.y Y=RfreeLModI
2 1 frlmpwsfi RLNoeRIFinY=ringLModR𝑠I
3 lnrlnm RLNoeRringLModRLNoeM
4 eqid ringLModR𝑠I=ringLModR𝑠I
5 4 pwslnm ringLModRLNoeMIFinringLModR𝑠ILNoeM
6 3 5 sylan RLNoeRIFinringLModR𝑠ILNoeM
7 2 6 eqeltrd RLNoeRIFinYLNoeM