Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( A e. ( CC \ { 0 } ) -> A e. CC ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> A e. CC ) |
3 |
|
eldifsni |
|- ( A e. ( CC \ { 0 } ) -> A =/= 0 ) |
4 |
3
|
3ad2ant1 |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> A =/= 0 ) |
5 |
|
simp2 |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> B e. CC ) |
6 |
2 4 5
|
cxpefd |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
7 |
6
|
fveq2d |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> ( log ` ( A ^c B ) ) = ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
8 |
|
logef |
|- ( ( B x. ( log ` A ) ) e. ran log -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) ) |
9 |
8
|
3ad2ant3 |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) ) |
10 |
7 9
|
eqtrd |
|- ( ( A e. ( CC \ { 0 } ) /\ B e. CC /\ ( B x. ( log ` A ) ) e. ran log ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |