Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ∈ ℂ ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → 𝐴 ∈ ℂ ) |
3 |
|
eldifsni |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ≠ 0 ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → 𝐴 ≠ 0 ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → 𝐵 ∈ ℂ ) |
6 |
2 4 5
|
cxpefd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
8 |
|
logef |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
10 |
7 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |