| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ∈ ℂ ) |
| 2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → 𝐴 ∈ ℂ ) |
| 3 |
|
eldifsni |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ≠ 0 ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → 𝐴 ≠ 0 ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → 𝐵 ∈ ℂ ) |
| 6 |
2 4 5
|
cxpefd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 7 |
6
|
fveq2d |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 8 |
|
logef |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 10 |
7 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℂ ∧ ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ran log ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |