| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlkn1 |
|- ( <" V "> e. ( 1 ClWWalksN G ) <-> ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) |
| 2 |
|
s1fv |
|- ( V e. ( Vtx ` G ) -> ( <" V "> ` 0 ) = V ) |
| 3 |
2
|
sneqd |
|- ( V e. ( Vtx ` G ) -> { ( <" V "> ` 0 ) } = { V } ) |
| 4 |
3
|
eleq1d |
|- ( V e. ( Vtx ` G ) -> ( { ( <" V "> ` 0 ) } e. ( Edg ` G ) <-> { V } e. ( Edg ` G ) ) ) |
| 5 |
4
|
biimpcd |
|- ( { ( <" V "> ` 0 ) } e. ( Edg ` G ) -> ( V e. ( Vtx ` G ) -> { V } e. ( Edg ` G ) ) ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) -> ( V e. ( Vtx ` G ) -> { V } e. ( Edg ` G ) ) ) |
| 7 |
6
|
com12 |
|- ( V e. ( Vtx ` G ) -> ( ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) -> { V } e. ( Edg ` G ) ) ) |
| 8 |
|
s1len |
|- ( # ` <" V "> ) = 1 |
| 9 |
8
|
a1i |
|- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> ( # ` <" V "> ) = 1 ) |
| 10 |
|
s1cl |
|- ( V e. ( Vtx ` G ) -> <" V "> e. Word ( Vtx ` G ) ) |
| 11 |
10
|
adantr |
|- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> <" V "> e. Word ( Vtx ` G ) ) |
| 12 |
2
|
eqcomd |
|- ( V e. ( Vtx ` G ) -> V = ( <" V "> ` 0 ) ) |
| 13 |
12
|
sneqd |
|- ( V e. ( Vtx ` G ) -> { V } = { ( <" V "> ` 0 ) } ) |
| 14 |
13
|
eleq1d |
|- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) <-> { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) |
| 15 |
14
|
biimpa |
|- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) |
| 16 |
9 11 15
|
3jca |
|- ( ( V e. ( Vtx ` G ) /\ { V } e. ( Edg ` G ) ) -> ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) |
| 17 |
16
|
ex |
|- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) -> ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 18 |
7 17
|
impbid |
|- ( V e. ( Vtx ` G ) -> ( ( ( # ` <" V "> ) = 1 /\ <" V "> e. Word ( Vtx ` G ) /\ { ( <" V "> ` 0 ) } e. ( Edg ` G ) ) <-> { V } e. ( Edg ` G ) ) ) |
| 19 |
1 18
|
bitr2id |
|- ( V e. ( Vtx ` G ) -> ( { V } e. ( Edg ` G ) <-> <" V "> e. ( 1 ClWWalksN G ) ) ) |